Merge branch 'main' into pages
1
.gitignore
vendored
@@ -14,3 +14,4 @@ src/HowBadIsMyBatch.nbconvert.html
|
||||
src/__pycache__/
|
||||
src/intensivstationen/__pycache__/
|
||||
google-chrome-stable_current_amd64*
|
||||
src/captcha/__pycache__
|
||||
@@ -3,7 +3,7 @@ channels:
|
||||
- defaults
|
||||
# - conda-forge
|
||||
dependencies:
|
||||
- python=3
|
||||
- python=3.9
|
||||
- ipykernel
|
||||
- numpy
|
||||
- pandas
|
||||
@@ -12,7 +12,7 @@ dependencies:
|
||||
- bs4
|
||||
- lxml
|
||||
- jupyter
|
||||
- tensorflow
|
||||
- tensorflow=2.11
|
||||
- nb_conda_kernels
|
||||
- pillow
|
||||
- openpyxl
|
||||
|
||||
@@ -1,74 +0,0 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import io
|
||||
|
||||
# copied from value of characters variable in captcha_ocr.ipynb or captcha_ocr_trainAndSaveModel.ipynb
|
||||
characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'a', 'b', 'c', 'd', 'e', 'f']
|
||||
|
||||
img_width = 241
|
||||
img_height = 62
|
||||
|
||||
downsample_factor = 4
|
||||
|
||||
# copied from value of max_length variable in captcha_ocr.ipynb or captcha_ocr_trainAndSaveModel.ipynb
|
||||
max_length = 6
|
||||
|
||||
char_to_num = layers.StringLookup(
|
||||
vocabulary=list(characters),
|
||||
mask_token=None)
|
||||
|
||||
num_to_char = layers.StringLookup(
|
||||
vocabulary=char_to_num.get_vocabulary(),
|
||||
mask_token=None, invert=True)
|
||||
|
||||
def encode_single_sample(img_path):
|
||||
# 1. Read image
|
||||
img = tf.io.read_file(img_path)
|
||||
# 2. Decode and convert to grayscale
|
||||
img = tf.io.decode_png(img, channels=1)
|
||||
# 3. Convert to float32 in [0, 1] range
|
||||
img = tf.image.convert_image_dtype(img, tf.float32)
|
||||
# 4. Resize to the desired size
|
||||
img = tf.image.resize(img, [img_height, img_width])
|
||||
# 5. Transpose the image because we want the time
|
||||
# dimension to correspond to the width of the image.
|
||||
img = tf.transpose(img, perm=[1, 0, 2])
|
||||
# 7. Return a dict as our model is expecting two inputs
|
||||
return asSingleSampleBatch(img)
|
||||
|
||||
def asSingleSampleBatch(img):
|
||||
array = keras.utils.img_to_array(img)
|
||||
array = np.expand_dims(array, axis=0)
|
||||
return array
|
||||
|
||||
def decode_batch_predictions(pred):
|
||||
input_len = np.ones(pred.shape[0]) * pred.shape[1]
|
||||
# Use greedy search. For complex tasks, you can use beam search
|
||||
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][:, :max_length]
|
||||
# Iterate over the results and get back the text
|
||||
output_text = []
|
||||
for res in results:
|
||||
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
|
||||
output_text.append(res)
|
||||
return output_text
|
||||
|
||||
def _getModel():
|
||||
print("loading model...")
|
||||
model = load_model()
|
||||
model.summary()
|
||||
return model
|
||||
|
||||
def load_model():
|
||||
model = keras.models.load_model('model')
|
||||
return keras.models.Model(
|
||||
model.get_layer(name="image").input,
|
||||
model.get_layer(name="dense2").output)
|
||||
|
||||
def getTextInCaptchaImage(captchaImageFile):
|
||||
batchImages = encode_single_sample(captchaImageFile)
|
||||
preds = _getModel().predict(batchImages)
|
||||
return decode_batch_predictions(preds)[0]
|
||||
@@ -329,7 +329,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.8"
|
||||
"version": "3.9.15"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
||||
@@ -2,8 +2,9 @@ import os
|
||||
import time
|
||||
from WebDriver import getWebDriver, isCaptchaSolved, saveCaptchaImageAs
|
||||
from selenium.webdriver.common.by import By
|
||||
from CaptchaReader import getTextInCaptchaImage
|
||||
from captcha.CaptchaReader import CaptchaReader
|
||||
from zipUtils import unzipAndRemove
|
||||
from captcha.CaptchaShape import CaptchaShape
|
||||
|
||||
|
||||
#def getTextInCaptchaImage(captchaImageFile):
|
||||
@@ -15,11 +16,16 @@ from zipUtils import unzipAndRemove
|
||||
|
||||
def solveCaptchaAndStartFileDownload(driver, captchaImageFile):
|
||||
saveCaptchaImageAs(driver, captchaImageFile)
|
||||
textInCaptchaImage = getTextInCaptchaImage(captchaImageFile)
|
||||
textInCaptchaImage = _createCaptchaReader().getTextInCaptchaImage(captchaImageFile)
|
||||
print('textInCaptchaImage:', textInCaptchaImage)
|
||||
driver.find_element(By.ID, "verificationCode").send_keys(textInCaptchaImage)
|
||||
driver.find_element(By.CSS_SELECTOR, '[name="downloadbut"]').click()
|
||||
|
||||
def _createCaptchaReader():
|
||||
working_directory = os.path.dirname(__file__)
|
||||
return CaptchaReader(modelFilepath = f'{working_directory}/captcha/MobileNetV3Small',
|
||||
captchaShape = CaptchaShape())
|
||||
|
||||
def downloadFile(absoluteFile, driver, maxTries):
|
||||
def _downloadFile():
|
||||
driver.get('https://vaers.hhs.gov/eSubDownload/index.jsp?fn=' + os.path.basename(absoluteFile))
|
||||
@@ -42,7 +48,7 @@ def _waitUntilDownloadHasFinished(file):
|
||||
time.sleep(2)
|
||||
|
||||
def downloadVAERSFile(file, downloadDir):
|
||||
driver = getWebDriver(downloadDir, isHeadless = True)
|
||||
driver = getWebDriver(downloadDir, isHeadless = False)
|
||||
downloadedFile = downloadFile(
|
||||
absoluteFile = downloadDir + "/" + file,
|
||||
driver = driver,
|
||||
|
||||
0
src/__init__.py
Normal file
561
src/captcha.ipynb
Normal file
@@ -0,0 +1,561 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "UNKC5YSEIS_d"
|
||||
},
|
||||
"source": [
|
||||
"# Captchas\n",
|
||||
"\n",
|
||||
"**see:** https://keras.io/examples/vision/captcha_ocr/<br>\n",
|
||||
"**original:** https://colab.research.google.com/drive/1Olw2KMHfPlnGaYuzffl2zb6D1etlBGZf?usp=sharing<br>\n",
|
||||
"**View Github version in Colab:** <a href=\"https://colab.research.google.com/github/KnollFrank/2captcha-worker-assistant-server/blob/master/captcha_ocr_trainAndSaveModel_colab.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a><br>\n",
|
||||
"**paper:** Simple and Easy: Transfer Learning-Based Attacks to Text CAPTCHA<br>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "wRUsVuIiIS_s"
|
||||
},
|
||||
"source": [
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "zZSwQragIS_v"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import numpy as np\n",
|
||||
"from pathlib import Path\n",
|
||||
"import tensorflow as tf\n",
|
||||
"from captcha.GoogleDriveManager import GoogleDriveManager\n",
|
||||
"from captcha.CaptchaGenerator import CaptchaGenerator\n",
|
||||
"from captcha.CharNumConverter import CharNumConverter\n",
|
||||
"from captcha.DataSplitter import DataSplitter\n",
|
||||
"from captcha.DatasetFactory import DatasetFactory\n",
|
||||
"from captcha.ModelFactory import ModelFactory\n",
|
||||
"from captcha.PredictionsDecoder import PredictionsDecoder\n",
|
||||
"from captcha.ModelDAO import ModelDAO\n",
|
||||
"from captcha.CaptchaShape import CaptchaShape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "0DZfMrbe3MGN"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def getImagesAndLabels(dataDir):\n",
|
||||
" fileSuffix = \".jpeg\"\n",
|
||||
" images = sorted(list(map(str, list(dataDir.glob(\"*\" + fileSuffix)))))\n",
|
||||
" labels = [image.split(os.path.sep)[-1].split(fileSuffix)[0] for image in images]\n",
|
||||
" return images, labels\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "kdL9_t03Mf3t"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def getTrainValidationTestDatasets(dataDir, datasetFactory):\n",
|
||||
" images, labels = getImagesAndLabels(dataDir)\n",
|
||||
" print(\"Number of images found:\", len(images))\n",
|
||||
" print(\"Characters:\", CaptchaGenerator.characters)\n",
|
||||
"\n",
|
||||
" dataSplitter = DataSplitter(images, labels)\n",
|
||||
" \n",
|
||||
" return (\n",
|
||||
" datasetFactory.createDataset(*dataSplitter.getTrain()),\n",
|
||||
" datasetFactory.createDataset(*dataSplitter.getValid()),\n",
|
||||
" datasetFactory.createDataset(*dataSplitter.getTest())\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "FqVSEuZp3MGT"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import math\n",
|
||||
"\n",
|
||||
"def displayImagesInGrid(numGridCols, images, titles, titleColors):\n",
|
||||
" assert len(images) == len(titles) == len(titleColors)\n",
|
||||
" images = [image.numpy().astype(np.uint8) for image in images]\n",
|
||||
" numGridRows = math.ceil(len(images) / numGridCols)\n",
|
||||
" _, axs = plt.subplots(numGridRows, numGridCols, figsize=(15, 5))\n",
|
||||
" for row in range(numGridRows):\n",
|
||||
" for col in range(numGridCols):\n",
|
||||
" ax = axs[row, col]\n",
|
||||
" ax.axis(\"off\")\n",
|
||||
" i = row * numGridCols + col\n",
|
||||
" if(i < len(images)):\n",
|
||||
" ax.imshow(images[i])\n",
|
||||
" ax.set_title(titles[i], color=titleColors[i])\n",
|
||||
" plt.show()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "apkeCHhP3MGU"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def display16Predictions(model, dataset, predictionsDecoder):\n",
|
||||
" for batch in dataset.take(1):\n",
|
||||
" numPredictions2Display = 16\n",
|
||||
" batch_images = batch[\"image\"][:numPredictions2Display]\n",
|
||||
" batch_labels = batch[\"label\"][:numPredictions2Display]\n",
|
||||
"\n",
|
||||
" preds = model.predict(batch_images)\n",
|
||||
" pred_texts = predictionsDecoder.decode_batch_predictions(preds)\n",
|
||||
" orig_texts = predictionsDecoder.asStrings(batch_labels)\n",
|
||||
"\n",
|
||||
" displayImagesInGrid(\n",
|
||||
" 4,\n",
|
||||
" batch_images,\n",
|
||||
" [f\"Prediction/Truth: {pred_text}/{orig_text}\" for (pred_text, orig_text) in zip(pred_texts, orig_texts)],\n",
|
||||
" ['green' if pred_text == orig_text else 'red' for (pred_text, orig_text) in zip(pred_texts, orig_texts)])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def printLayers(model):\n",
|
||||
" for i, layer in enumerate(model.layers):\n",
|
||||
" print(i, layer.name)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "S3X_SslH3MGY"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# FK-TODO: entferne die getAccuracy()-Methode. Implementiere stattdessen https://stackoverflow.com/questions/37657260/how-to-implement-custom-metric-in-keras oder https://keras.io/api/metrics/#custom-metrics\n",
|
||||
"def getAccuracy(dataset, prediction_model, ctc_decode):\n",
|
||||
" accuracy = tf.keras.metrics.Accuracy()\n",
|
||||
"\n",
|
||||
" for batch in dataset:\n",
|
||||
" accuracy.update_state(batch[\"label\"], ctc_decode(prediction_model.predict(batch[\"image\"], verbose=0)))\n",
|
||||
"\n",
|
||||
" return accuracy.result().numpy()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "94755hrNMf3w"
|
||||
},
|
||||
"source": [
|
||||
"## Preparation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "NZrKXF6P3MGY"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"inColab = 'google.colab' in str(get_ipython())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "7EsmTaF03MGZ"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if inColab:\n",
|
||||
" GoogleDriveManager.mount()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "S_4hl4S4BmZK"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if inColab:\n",
|
||||
" !cp {GoogleDriveManager._baseFolder}/captchas.zip .\n",
|
||||
" !unzip captchas.zip"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "WmUghcQaMf3y"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"modelDAO = ModelDAO(inColab)\n",
|
||||
"charNumConverter = CharNumConverter(CaptchaGenerator.characters)\n",
|
||||
"predictionsDecoder = PredictionsDecoder(CaptchaGenerator.captchaLength, charNumConverter.num_to_char)\n",
|
||||
"captchaShape = CaptchaShape()\n",
|
||||
"datasetFactory = DatasetFactory(captchaShape, charNumConverter.char_to_num, batch_size = 64)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "lsLuSi7h3MGZ"
|
||||
},
|
||||
"source": [
|
||||
"## Create And Train Base Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "oRcemcbG3MGa"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if inColab:\n",
|
||||
" !sudo apt install ttf-mscorefonts-installer\n",
|
||||
" !sudo fc-cache -f\n",
|
||||
" !fc-match Arial"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "P7myCt7e2h6A"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# \"We generate 200,000 images for base model pre-training\"\n",
|
||||
"captchaGenerator = CaptchaGenerator(\n",
|
||||
" numCaptchas = 50, # 50, # 200000,\n",
|
||||
" dataDir = Path(\"captchas/generated/VAERS/\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "j9apYsyI3MGb"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"captchaGenerator.createAndSaveCaptchas()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "AgN4skCkMf31"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_dataset, validation_dataset, test_dataset = getTrainValidationTestDatasets(captchaGenerator.dataDir, datasetFactory)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "RcgWHXVSNsa7"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for batch in train_dataset.take(1):\n",
|
||||
" numImages2Display = 16\n",
|
||||
" images = batch[\"image\"][:numImages2Display]\n",
|
||||
" labels = batch[\"label\"][:numImages2Display]\n",
|
||||
" displayImagesInGrid(4, images, predictionsDecoder.asStrings(labels), ['black'] * len(labels))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "zDoFYKM2hdEW"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"modelFactory = ModelFactory(captchaShape, charNumConverter.char_to_num)\n",
|
||||
"model = modelFactory.createMobileNetV3Small()\n",
|
||||
"model.summary()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "ltXYrpjIITAb"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# \"the success rates became stable after the base-model training epochs exceeded 20\"\n",
|
||||
"history = model.fit(\n",
|
||||
" train_dataset,\n",
|
||||
" validation_data=validation_dataset,\n",
|
||||
" epochs=20)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "fPG-Yl1SJfF7"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"modelDAO.saveModel(model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "NnNHMtIGITAe"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prediction_model = ModelFactory.createPredictionModel(model)\n",
|
||||
"prediction_model.summary()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "YW651ztD8sKI"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"display16Predictions(prediction_model, test_dataset, predictionsDecoder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "V5gqMBIwBmZU"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"getAccuracy(test_dataset, prediction_model, predictionsDecoder.ctc_decode)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "UYxiYTH9BmZU"
|
||||
},
|
||||
"source": [
|
||||
"## Transfer learning"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "WV8IS4KrBmZU"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# \"we collected 1,500 real CAPTCHAs from the websites. Note that only 500 of them are used for fine-tuning, and another 1,000 are applied to calculate the test accuracy\"\n",
|
||||
"# FK-TODO: lade das pre-trainierte model und trainiere es mit 500 real-world-Daten aus dem Ordner captchas/VAERS/, die restlichen 540 (es sollten nach obigem Zitat aber 1,000 sein) sind dann die Test-Daten.\n",
|
||||
"# see https://keras.io/guides/transfer_learning/\n",
|
||||
"# see https://www.tensorflow.org/tutorials/images/transfer_learning\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"modelName, numTrainableLayers = 'MobileNetV3Small', 104\n",
|
||||
"# modelName, numTrainableLayers = 'ResNet101', 348"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "D7ogEQmB3MGj"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# FK-TODO: DRY with VAERSFileDownloader\n",
|
||||
"modelFilepath = f'{os.getcwd()}/captcha/{modelName}'\n",
|
||||
"model = modelDAO.loadModel(modelFilepath)\n",
|
||||
"model.summary(show_trainable=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "gbPigogKNFrD"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# printLayers(model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "59quw8o3Mf34"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.trainable = True\n",
|
||||
"for layer in model.layers[:numTrainableLayers]:\n",
|
||||
" layer.trainable = False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "acGczax3Mf34"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.summary(show_trainable=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "q7_MjUO0BmZV"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_dataset, validation_dataset, test_dataset = getTrainValidationTestDatasets(Path(\"captcha/captchas/VAERS/\"), datasetFactory)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "dZsCpibkBmZX"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# \"The model is optimized by a stochastic gradient descent (SGD) strategy with an initial learning rate of 0.004, weight decay of 0.00004 and momentum of 0.9.\"\n",
|
||||
"from tensorflow.keras.optimizers import SGD\n",
|
||||
"# model.compile(optimizer=SGD(learning_rate=0.0001, momentum=0.9))\n",
|
||||
"model.compile(optimizer='adam')\n",
|
||||
"\n",
|
||||
"# \"Therefore, in our experiments, we chose 1 epoch for the fine-tuning stage.\"\n",
|
||||
"history = model.fit(\n",
|
||||
" train_dataset,\n",
|
||||
" validation_data=validation_dataset,\n",
|
||||
" epochs=20)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "TRbJigbH3MGl"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prediction_model = ModelFactory.createPredictionModel(model)\n",
|
||||
"prediction_model.summary()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "rPszfhJ4BmZX"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"getAccuracy(test_dataset, prediction_model, predictionsDecoder.ctc_decode)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"id": "hfmRY1qC7aVV"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"display16Predictions(prediction_model, test_dataset, predictionsDecoder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"modelDAO.saveModel(model)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"collapsed_sections": [],
|
||||
"name": "captcha.ipynb",
|
||||
"private_outputs": true,
|
||||
"provenance": []
|
||||
},
|
||||
"gpuClass": "standard",
|
||||
"kernelspec": {
|
||||
"display_name": "howbadismybatch-venv-kernel",
|
||||
"language": "python",
|
||||
"name": "howbadismybatch-venv-kernel"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.15"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
27
src/captcha/CTCLayer.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
|
||||
|
||||
# see https://keras.io/guides/making_new_layers_and_models_via_subclassing/
|
||||
class CTCLayer(layers.Layer):
|
||||
|
||||
def __init__(self, name=None):
|
||||
super().__init__(name=name)
|
||||
self.loss_fn = keras.backend.ctc_batch_cost
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
# Compute the training-time loss value and add it
|
||||
# to the layer using `self.add_loss()`.
|
||||
batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
|
||||
input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
|
||||
label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")
|
||||
|
||||
input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
|
||||
label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")
|
||||
|
||||
loss = self.loss_fn(y_true, y_pred, input_length, label_length)
|
||||
self.add_loss(loss)
|
||||
|
||||
# At test time, just return the computed predictions
|
||||
return y_pred
|
||||
43
src/captcha/CaptchaGenerator.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
import random
|
||||
import string
|
||||
import shutil
|
||||
|
||||
|
||||
class CaptchaGenerator:
|
||||
|
||||
characters = sorted(set(list(string.ascii_letters + string.digits)))
|
||||
captchaLength = 6
|
||||
|
||||
def __init__(self, numCaptchas, dataDir):
|
||||
self.numCaptchas = numCaptchas
|
||||
self.dataDir = dataDir
|
||||
|
||||
def createAndSaveCaptchas(self):
|
||||
self._prepareDataDir()
|
||||
for _ in range(self.numCaptchas):
|
||||
self._createAndSaveCaptcha()
|
||||
|
||||
def _prepareDataDir(self):
|
||||
shutil.rmtree(self.dataDir, ignore_errors = True)
|
||||
self.dataDir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def _createAndSaveCaptcha(self):
|
||||
captchaString = self._createCaptchaString()
|
||||
captcha = self._createCaptcha(captchaString)
|
||||
captcha.save(f"{str(self.dataDir)}/{captchaString}.jpeg")
|
||||
|
||||
def _createCaptchaString(self):
|
||||
return ''.join(random.choice(CaptchaGenerator.characters) for _ in range(CaptchaGenerator.captchaLength))
|
||||
|
||||
def _createCaptcha(self, word):
|
||||
image = Image.new("RGB", (360, 96), "#373737")
|
||||
draw = ImageDraw.Draw(image)
|
||||
font = ImageFont.truetype("ariali.ttf", size=40)
|
||||
draw.text((30, 10), word[0], font=font)
|
||||
draw.text((80, 30), word[1], font=font)
|
||||
draw.text((135, 10), word[2], font=font)
|
||||
draw.text((190, 30), word[3], font=font)
|
||||
draw.text((250, 10), word[4], font=font)
|
||||
draw.text((295, 30), word[5], font=font)
|
||||
return image
|
||||
31
src/captcha/CaptchaReader.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from captcha.ModelDAO import ModelDAO
|
||||
from captcha.ModelFactory import ModelFactory
|
||||
from captcha.PredictionsDecoder import PredictionsDecoder
|
||||
from captcha.CaptchaGenerator import CaptchaGenerator
|
||||
from captcha.CharNumConverter import CharNumConverter
|
||||
from captcha.DatasetFactory import DatasetFactory
|
||||
import numpy as np
|
||||
from tensorflow import keras
|
||||
|
||||
|
||||
class CaptchaReader:
|
||||
|
||||
def __init__(self, modelFilepath, captchaShape):
|
||||
self.modelFilepath = modelFilepath
|
||||
self.captchaShape = captchaShape
|
||||
|
||||
def getTextInCaptchaImage(self, captchaImageFile):
|
||||
return self._getTextsInCaptchaImage(self._getCaptchaImage(captchaImageFile))[0]
|
||||
|
||||
def _getCaptchaImage(self, captchaImageFile):
|
||||
return self._asSingleSampleBatch(DatasetFactory.encodeImage(captchaImageFile, self.captchaShape))
|
||||
|
||||
def _asSingleSampleBatch(self, img):
|
||||
return np.expand_dims(keras.utils.img_to_array(img), axis=0)
|
||||
|
||||
def _getTextsInCaptchaImage(self, captchaImage):
|
||||
preds = self._createPredictionModel().predict(captchaImage)
|
||||
return PredictionsDecoder(CaptchaGenerator.captchaLength, CharNumConverter(CaptchaGenerator.characters).num_to_char).decode_batch_predictions(preds)
|
||||
|
||||
def _createPredictionModel(self):
|
||||
return ModelFactory.createPredictionModel(ModelDAO(inColab=False).loadModel(self.modelFilepath))
|
||||
22
src/captcha/CaptchaReaderTest.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import unittest
|
||||
from captcha.CaptchaReader import CaptchaReader
|
||||
from captcha.CaptchaShape import CaptchaShape
|
||||
import os
|
||||
|
||||
class CaptchaReaderTest(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
self.working_directory = os.path.dirname(__file__)
|
||||
|
||||
def test_getTextInCaptchaImage(self):
|
||||
# Given
|
||||
textInCaptchaImage = '1Ad47a'
|
||||
captchaReader = CaptchaReader(
|
||||
modelFilepath = f'{self.working_directory}/MobileNetV3Small',
|
||||
captchaShape = CaptchaShape())
|
||||
|
||||
# When
|
||||
textInCaptchaImageActual = captchaReader.getTextInCaptchaImage(f'{self.working_directory}/captchas/VAERS/{textInCaptchaImage}.jpeg')
|
||||
|
||||
# Then
|
||||
self.assertEqual(textInCaptchaImageActual, textInCaptchaImage)
|
||||
5
src/captcha/CaptchaShape.py
Normal file
@@ -0,0 +1,5 @@
|
||||
class CaptchaShape:
|
||||
|
||||
def __init__(self):
|
||||
self.width = 241
|
||||
self.height = 62
|
||||
10
src/captcha/CharNumConverter.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from tensorflow.keras import layers
|
||||
|
||||
class CharNumConverter:
|
||||
|
||||
def __init__(self, characters):
|
||||
self.char_to_num = layers.StringLookup(vocabulary=list(characters), mask_token=None)
|
||||
self.num_to_char = layers.StringLookup(
|
||||
vocabulary=self.char_to_num.get_vocabulary(),
|
||||
mask_token=None,
|
||||
invert=True)
|
||||
28
src/captcha/DataSplitter.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DataSplitter:
|
||||
|
||||
def __init__(self, x, y):
|
||||
(self.x_train, self.y_train), (x_valid_test, y_valid_test) = DataSplitter._splitData(np.array(x), np.array(y), train_size=0.7)
|
||||
(self.x_valid, self.y_valid), (self.x_test, self.y_test) = DataSplitter._splitData(x_valid_test, y_valid_test, train_size=0.5)
|
||||
|
||||
def getTrain(self):
|
||||
return (self.x_train, self.y_train)
|
||||
|
||||
def getValid(self):
|
||||
return (self.x_valid, self.y_valid)
|
||||
|
||||
def getTest(self):
|
||||
return (self.x_test, self.y_test)
|
||||
|
||||
@staticmethod
|
||||
def _splitData(x, y, train_size=0.9, shuffle=True):
|
||||
size = len(x)
|
||||
indices = np.arange(size)
|
||||
if shuffle:
|
||||
np.random.shuffle(indices)
|
||||
train_samples = int(size * train_size)
|
||||
x_train, y_train = x[indices[:train_samples]], y[indices[:train_samples]]
|
||||
x_test, y_test = x[indices[train_samples:]], y[indices[train_samples:]]
|
||||
return (x_train, y_train), (x_test, y_test)
|
||||
27
src/captcha/DatasetFactory.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class DatasetFactory:
|
||||
|
||||
def __init__(self, captchaShape, char_to_num, batch_size):
|
||||
self.captchaShape = captchaShape
|
||||
self.char_to_num = char_to_num
|
||||
self.batch_size = batch_size
|
||||
|
||||
def createDataset(self, x, y):
|
||||
dataset = tf.data.Dataset.from_tensor_slices((x, y))
|
||||
dataset = dataset.map(self._encodeImageAndLabel, num_parallel_calls=tf.data.AUTOTUNE)
|
||||
dataset = dataset.batch(self.batch_size).prefetch(buffer_size=tf.data.AUTOTUNE)
|
||||
return dataset
|
||||
|
||||
def _encodeImageAndLabel(self, imageFilename, label):
|
||||
return {
|
||||
"image": DatasetFactory.encodeImage(imageFilename, self.captchaShape),
|
||||
"label": self.char_to_num(tf.strings.unicode_split(label, input_encoding="UTF-8"))}
|
||||
|
||||
@staticmethod
|
||||
def encodeImage(imageFilename, captchaShape):
|
||||
img = tf.io.read_file(imageFilename)
|
||||
img = tf.io.decode_jpeg(img, channels=3)
|
||||
img = tf.image.resize(img, [captchaShape.height, captchaShape.width])
|
||||
return img
|
||||
27
src/captcha/GoogleDriveManager.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class GoogleDriveManager:
|
||||
|
||||
_googleDriveFolder = Path('/content/gdrive')
|
||||
_baseFolder = _googleDriveFolder / 'MyDrive/CAPTCHA/models/'
|
||||
|
||||
@staticmethod
|
||||
def mount():
|
||||
from google.colab import drive
|
||||
drive.mount(str(GoogleDriveManager._googleDriveFolder))
|
||||
|
||||
@staticmethod
|
||||
def uploadFolderToGoogleDrive(folder):
|
||||
pass
|
||||
# FK-FIXME:
|
||||
# !zip -r {folder}.zip {folder}/
|
||||
# !cp {folder}.zip {GoogleDriveManager._baseFolder}
|
||||
|
||||
@staticmethod
|
||||
def downloadFolderFromGoogleDrive(folder):
|
||||
pass
|
||||
# FK-FIXME:
|
||||
# !cp {GoogleDriveManager._baseFolder}/{folder}.zip .
|
||||
# !rm -rf {folder}
|
||||
# !unzip {folder}.zip
|
||||
BIN
src/captcha/MobileNetV3Small/fingerprint.pb
Normal file
220
src/captcha/MobileNetV3Small/keras_metadata.pb
Normal file
BIN
src/captcha/MobileNetV3Small/saved_model.pb
Normal file
BIN
src/captcha/MobileNetV3Small/variables/variables.index
Normal file
20
src/captcha/ModelDAO.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from tensorflow import keras
|
||||
from captcha.GoogleDriveManager import GoogleDriveManager
|
||||
import shutil
|
||||
|
||||
|
||||
class ModelDAO:
|
||||
|
||||
def __init__(self, inColab):
|
||||
self.inColab = inColab
|
||||
|
||||
def saveModel(self, model):
|
||||
shutil.rmtree(model.name, ignore_errors = True)
|
||||
model.save(model.name)
|
||||
if self.inColab:
|
||||
GoogleDriveManager.uploadFolderToGoogleDrive(model.name)
|
||||
|
||||
def loadModel(self, modelFilepath):
|
||||
if self.inColab:
|
||||
GoogleDriveManager.downloadFolderFromGoogleDrive(modelFilepath)
|
||||
return keras.models.load_model(modelFilepath)
|
||||
102
src/captcha/ModelFactory.py
Normal file
@@ -0,0 +1,102 @@
|
||||
from captcha.CTCLayer import CTCLayer
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
|
||||
|
||||
class ModelFactory:
|
||||
|
||||
predictionModelInputLayerName = "image"
|
||||
predictionModelOutputLayerName = "dense2"
|
||||
|
||||
def __init__(self, captchaShape, char_to_num):
|
||||
self.captchaShape = captchaShape
|
||||
self.char_to_num = char_to_num
|
||||
|
||||
# see https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet/ResNet101
|
||||
def createResNet101(self):
|
||||
return self._createModel(
|
||||
baseModelFactory = lambda input_tensor: tf.keras.applications.resnet.ResNet101(
|
||||
input_tensor = input_tensor,
|
||||
weights = 'imagenet',
|
||||
include_top = False),
|
||||
preprocess_input = tf.keras.applications.resnet.preprocess_input,
|
||||
name = 'ResNet101')
|
||||
|
||||
def createMobileNetV2(self):
|
||||
return self._createModel(
|
||||
baseModelFactory = lambda input_tensor: tf.keras.applications.MobileNetV2(
|
||||
input_tensor = input_tensor,
|
||||
weights = 'imagenet',
|
||||
include_top = False),
|
||||
preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input,
|
||||
name = 'MobileNetV2')
|
||||
|
||||
def createMobileNetV3Small(self):
|
||||
return self._createModel(
|
||||
baseModelFactory = lambda input_tensor: tf.keras.applications.MobileNetV3Small(
|
||||
input_tensor = input_tensor,
|
||||
minimalistic = True,
|
||||
weights = 'imagenet',
|
||||
include_top = False),
|
||||
preprocess_input = tf.keras.applications.mobilenet_v3.preprocess_input,
|
||||
name = 'MobileNetV3Small')
|
||||
|
||||
@staticmethod
|
||||
def createPredictionModel(model):
|
||||
return keras.models.Model(
|
||||
model.get_layer(name=ModelFactory.predictionModelInputLayerName).input,
|
||||
model.get_layer(name=ModelFactory.predictionModelOutputLayerName).output)
|
||||
|
||||
def _createModel(self, baseModelFactory, preprocess_input, name):
|
||||
# Inputs to the model
|
||||
input_image = layers.Input(
|
||||
shape = (self.captchaShape.height, self.captchaShape.width, 3),
|
||||
name = ModelFactory.predictionModelInputLayerName,
|
||||
dtype = "float32")
|
||||
labels = layers.Input(name="label", shape=(None,), dtype="float32")
|
||||
|
||||
image = preprocess_input(input_image)
|
||||
# Transpose the image because we want the time dimension to correspond to the width of the image.
|
||||
image = tf.keras.layers.Permute(dims=[2, 1, 3])(image)
|
||||
base_model = baseModelFactory(image)
|
||||
x = layers.Reshape(
|
||||
target_shape=(base_model.output_shape[1], base_model.output_shape[2] * base_model.output_shape[3]),
|
||||
name="reshape")(base_model.output)
|
||||
x = layers.Dense(64, activation="relu", name="dense1")(x)
|
||||
x = layers.Dropout(0.2)(x)
|
||||
|
||||
# RNNs
|
||||
x = layers.Bidirectional(
|
||||
layers.LSTM(
|
||||
128,
|
||||
return_sequences=True,
|
||||
dropout=0.25,
|
||||
unroll=False,
|
||||
name="LSTM1"))(x)
|
||||
x = layers.Bidirectional(
|
||||
layers.LSTM(
|
||||
64,
|
||||
return_sequences=True,
|
||||
dropout=0.25,
|
||||
unroll=False,
|
||||
name="LSTM2"))(x)
|
||||
|
||||
# Output layer
|
||||
x = layers.Dense(
|
||||
len(self.char_to_num.get_vocabulary()) + 1,
|
||||
activation="softmax",
|
||||
name=ModelFactory.predictionModelOutputLayerName)(x)
|
||||
|
||||
# Add CTC layer for calculating CTC loss at each step
|
||||
output = CTCLayer(name="ctc_loss")(labels, x)
|
||||
|
||||
model = keras.models.Model(
|
||||
inputs=[input_image, labels],
|
||||
outputs=output,
|
||||
name=name)
|
||||
# "The model is optimized by a stochastic gradient descent (SGD) strategy with an initial learning rate of 0.004, weight decay of 0.00004 and momentum of 0.9."
|
||||
# from tensorflow.keras.optimizers import SGD
|
||||
# model.compile(optimizer=SGD(learning_rate=0.004, "weight_decay=0.00004," momentum=0.9)
|
||||
model.compile(optimizer=keras.optimizers.Adam())
|
||||
return model
|
||||
24
src/captcha/PredictionsDecoder.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
import numpy as np
|
||||
|
||||
|
||||
class PredictionsDecoder:
|
||||
|
||||
def __init__(self, captchaLength, num_to_char):
|
||||
self.captchaLength = captchaLength
|
||||
self.num_to_char = num_to_char
|
||||
|
||||
def decode_batch_predictions(self, pred):
|
||||
return self.asStrings(self.ctc_decode(pred))
|
||||
|
||||
def ctc_decode(self, pred):
|
||||
input_len = np.ones(pred.shape[0]) * pred.shape[1]
|
||||
# Use greedy search. For complex tasks, you can use beam search
|
||||
return keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][:, :self.captchaLength]
|
||||
|
||||
def asStrings(self, labels):
|
||||
return [self.asString(label) for label in labels]
|
||||
|
||||
def asString(self, label):
|
||||
return tf.strings.reduce_join(self.num_to_char(label)).numpy().decode("utf-8")
|
||||
0
src/captcha/__init__.py
Normal file
BIN
src/captcha/captchas/VAERS/101659.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/101c33.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/10472b.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/10947F.jpeg
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
BIN
src/captcha/captchas/VAERS/109adF.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/109d2a.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/10DDd9.jpeg
Normal file
|
After Width: | Height: | Size: 4.0 KiB |
BIN
src/captcha/captchas/VAERS/10b1b3.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/10bcdd.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/110C20.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/117f67.jpeg
Normal file
|
After Width: | Height: | Size: 3.2 KiB |
BIN
src/captcha/captchas/VAERS/118c39.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/11CD9E.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/123C40.jpeg
Normal file
|
After Width: | Height: | Size: 3.8 KiB |
BIN
src/captcha/captchas/VAERS/126383.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/12E29c.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/12a107.jpeg
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
BIN
src/captcha/captchas/VAERS/12b8A8.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/133427.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/136B3b.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/13709F.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/137d4B.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/13DeEA.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/1421bf.jpeg
Normal file
|
After Width: | Height: | Size: 3.2 KiB |
BIN
src/captcha/captchas/VAERS/1450C9.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/14540d.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/14853f.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/158AB4.jpeg
Normal file
|
After Width: | Height: | Size: 3.8 KiB |
BIN
src/captcha/captchas/VAERS/15A9c4.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/15B2c5.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/16042f.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/1624Dd.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/1687dF.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/16E867.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/170Af9.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/170b0f.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/171465.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/172166.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/1766Ce.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/17Ae6a.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/17B5e1.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/18328E.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/184c7a.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/1874d6.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/18B171.jpeg
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
BIN
src/captcha/captchas/VAERS/18F64a.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/18ca35.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/192e93.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/195092.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/19713A.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/197814.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/198130.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/19BAb9.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/19b687.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/19ec2D.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/19f61D.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/1Ad47a.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/1BcCed.jpeg
Normal file
|
After Width: | Height: | Size: 3.8 KiB |
BIN
src/captcha/captchas/VAERS/1CF389.jpeg
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
src/captcha/captchas/VAERS/1D3011.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/1DC996.jpeg
Normal file
|
After Width: | Height: | Size: 3.9 KiB |
BIN
src/captcha/captchas/VAERS/1E94d1.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/1FF5a4.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/1Fa47E.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/1b3DBE.jpeg
Normal file
|
After Width: | Height: | Size: 3.8 KiB |
BIN
src/captcha/captchas/VAERS/1b56Cb.jpeg
Normal file
|
After Width: | Height: | Size: 3.8 KiB |
BIN
src/captcha/captchas/VAERS/1c13C5.jpeg
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
src/captcha/captchas/VAERS/1c21F8.jpeg
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
BIN
src/captcha/captchas/VAERS/1c7761.jpeg
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
BIN
src/captcha/captchas/VAERS/1c9a87.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
src/captcha/captchas/VAERS/1d6281.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/1d6732.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/1dA2DF.jpeg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
src/captcha/captchas/VAERS/1dc1c1.jpeg
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
BIN
src/captcha/captchas/VAERS/1dc917.jpeg
Normal file
|
After Width: | Height: | Size: 3.4 KiB |