merging multiple series into a single DataFrame
This commit is contained in:
@@ -121,16 +121,6 @@
|
||||
"df_PFIZER_BIONTECH = df_patients_COVID19[df_patients_COVID19[\"VAX_MANU\"] == \"MODERNA\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e41885a8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_PFIZER_BIONTECH"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -144,21 +134,11 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4b3cb943",
|
||||
"id": "0ad4aab2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# table = pd.pivot_table(df_PFIZER_BIONTECH, values='DIED', columns=['DIED'], aggfunc=np.sum)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "284bf448",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pd.set_option('display.max_rows', None)"
|
||||
"df_PFIZER_BIONTECH"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -170,24 +150,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_DIED = df_PFIZER_BIONTECH[df_PFIZER_BIONTECH['DIED']=='Y'][['VAX_LOT']]\n",
|
||||
"df_DIED"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9c5ff2fd",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# df = df.groupby(['VAX_LOT']).count()\n",
|
||||
"#df2 = df.sort_values(by=['DIED'], ascending=False)\n",
|
||||
"#pd.set_option('display.max_rows', None)\n",
|
||||
"#print(df2)\n",
|
||||
"df_DIED.value_counts()"
|
||||
"df_DIED = df_PFIZER_BIONTECH[df_PFIZER_BIONTECH['DIED']=='Y'][['VAX_LOT']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -199,18 +162,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_DISABLE = df_PFIZER_BIONTECH[df_PFIZER_BIONTECH['DISABLE']=='Y'][['VAX_LOT']]\n",
|
||||
"df_DISABLE"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3d782392",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_DISABLE.value_counts()"
|
||||
"df_DISABLE = df_PFIZER_BIONTECH[df_PFIZER_BIONTECH['DISABLE']=='Y'][['VAX_LOT']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -222,20 +174,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_L_THREAT = df_PFIZER_BIONTECH[df_PFIZER_BIONTECH['L_THREAT']=='Y'][['VAX_LOT']]\n",
|
||||
"df_L_THREAT"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1a629007",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_L_THREAT.value_counts()"
|
||||
"df_L_THREAT = df_PFIZER_BIONTECH[df_PFIZER_BIONTECH['L_THREAT']=='Y'][['VAX_LOT']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -247,41 +186,35 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_ADR = df_PFIZER_BIONTECH[['VAX_LOT']]\n",
|
||||
"df_ADR"
|
||||
"df_ADR = df_PFIZER_BIONTECH[['VAX_LOT']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7b3005db",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_ADR_valueCounts = df_ADR.value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "07c93e74",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_ADR_valueCounts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1244c494",
|
||||
"id": "99945ca8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"source": [
|
||||
"df = pd.concat(\n",
|
||||
" {\n",
|
||||
" 'ADRs': df_ADR.value_counts(),\n",
|
||||
" 'DEATHS': df_DIED.value_counts(),\n",
|
||||
" 'DISABILITIES': df_DISABLE.value_counts(),\n",
|
||||
" 'LIFE THREATENING ILLNESSES': df_L_THREAT.value_counts()\n",
|
||||
" },\n",
|
||||
" axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d9191d12",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
jupyter notebook
|
||||
|
||||
FK-TODO:
|
||||
- VAX_LOT-Spalte normalisieren, d.h. toUpperCase(), Format des jeweiligen Herstellers berücksichtigen und "verschmutzte" Einträge Säubern, denn sie stellen alle dieselbe Charge dar:
|
||||
- VAX_LOT-Spalte normalisieren, d.h. toUpperCase(), Format des jeweiligen Herstellers berücksichtigen und "verschmutzte" Einträge säubern, denn sie stellen alle dieselbe Charge dar:
|
||||
039k20a
|
||||
MOD039K20A
|
||||
#039K20A
|
||||
|
||||
Reference in New Issue
Block a user