Files
HowBadIsMyBatch/HowBadIsMyBatch.ipynb
2022-01-25 22:02:44 +01:00

160 lines
4.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "9de5907f-18f5-4cb1-903e-26028ff1fa03",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"pd.set_option('display.max_rows', 100)\n",
"pd.set_option('display.max_columns', None)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "233bc590",
"metadata": {},
"outputs": [],
"source": [
"def createDataFrame(dataDir, manufacturer):\n",
" def read_csv(file, usecols):\n",
" return pd.read_csv(file, index_col = 'VAERS_ID', encoding = 'latin1', low_memory = False, usecols = usecols)\n",
"\n",
" def createDataFrameForYear(year):\n",
" folder = dataDir + \"/\" + year + \"VAERSData/\"\n",
" return pd.merge(\n",
" read_csv(folder + year + \"VAERSDATA.csv\", ['VAERS_ID', 'DIED', 'L_THREAT', 'DISABLE']),\n",
" read_csv(folder + year + \"VAERSVAX.csv\", ['VAERS_ID', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT']),\n",
" left_index = True,\n",
" right_index = True)\n",
"\n",
" df = pd.concat([createDataFrameForYear(\"2021\"), createDataFrameForYear(\"2022\")])\n",
" return df[(df[\"VAX_TYPE\"] == \"COVID19\") & (df[\"VAX_MANU\"] == manufacturer)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99945ca8",
"metadata": {},
"outputs": [],
"source": [
"def createBatchCodeTable(df):\n",
" def filter(df, col):\n",
" return df[df[col] == 'Y'][['VAX_LOT']]\n",
"\n",
" batchCodeTableDict = {\n",
" 'ADRs': df[['VAX_LOT']].value_counts(),\n",
" 'DEATHS': filter(df, 'DIED').value_counts(),\n",
" 'DISABILITIES': filter(df, 'DISABLE').value_counts(),\n",
" 'LIFE THREATENING ILLNESSES': filter(df, 'L_THREAT').value_counts()\n",
" }\n",
" return pd.concat(batchCodeTableDict, axis=1).replace(to_replace=np.nan, value=0)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86e0e4f2",
"metadata": {},
"outputs": [],
"source": [
"def saveBatchCodeTable(manufacturer, excelFile):\n",
" createBatchCodeTable(createDataFrame(\"VAERS\", manufacturer)).to_excel(excelFile)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab170c16",
"metadata": {},
"outputs": [],
"source": [
"saveBatchCodeTable(\"MODERNA\", \"results/moderna.xlsx\")\n",
"saveBatchCodeTable(\"PFIZER\\BIONTECH\", \"results/pfizer.xlsx\")\n",
"saveBatchCodeTable(\"JANSSEN\", \"results/janssen.xlsx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f506ac8",
"metadata": {},
"outputs": [],
"source": [
"import unittest"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e14465d7",
"metadata": {},
"outputs": [],
"source": [
"from pandas.testing import assert_frame_equal\n",
"\n",
"\n",
"class HowBadIsMyBatchTest(unittest.TestCase):\n",
"\n",
" def test_createBatchCodeTable(self):\n",
" # Given\n",
" dataFrame = createDataFrame(\"test/VAERS\", \"MODERNA\")\n",
" display(\"dataFrame:\", dataFrame)\n",
" batchCodeTable = createBatchCodeTable(dataFrame)\n",
"\n",
" # When\n",
" batchCodeTableExpected = pd.DataFrame(\n",
" {\n",
" 'ADRs': [2, 1],\n",
" 'DEATHS': [0, 1],\n",
" 'DISABILITIES': [2, 0],\n",
" 'LIFE THREATENING ILLNESSES': [0.0, 0.0]\n",
" },\n",
" index = pd.MultiIndex.from_arrays([['025L20A', '037K20A']], names = ('VAX_LOT',)))\n",
" display(\"batchCodeTable:\", batchCodeTable)\n",
" display(\"batchCodeTableExpected:\", batchCodeTableExpected)\n",
"\n",
" # Then\n",
" assert_frame_equal(batchCodeTable, batchCodeTableExpected, check_dtype = False)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef8f99c4",
"metadata": {},
"outputs": [],
"source": [
"unittest.main(argv=[''], verbosity=2, exit=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}