Files
HowBadIsMyBatch/HowBadIsMyBatch.ipynb
2022-01-31 22:16:13 +01:00

556 lines
24 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "9de5907f-18f5-4cb1-903e-26028ff1fa03",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"pd.set_option('display.max_rows', 100)\n",
"pd.set_option('display.max_columns', None)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a271254b",
"metadata": {},
"outputs": [],
"source": [
"def read_csv(file, usecols, dtype = {}):\n",
" return pd.read_csv(\n",
" file,\n",
" index_col = 'VAERS_ID',\n",
" encoding = 'latin1',\n",
" low_memory = False,\n",
" usecols = usecols,\n",
" dtype = dtype)\n",
"\n",
"def readVaersDescr(dataDir, year):\n",
" folder = dataDir + \"/\" + year + \"VAERSData/\"\n",
" return {\n",
" 'VAERSDATA':\n",
" read_csv(\n",
" folder + year + \"VAERSDATA.csv\",\n",
" ['VAERS_ID', 'DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT']),\n",
" 'VAERSVAX':\n",
" read_csv(\n",
" folder + year + \"VAERSVAX.csv\",\n",
" ['VAERS_ID', 'VAX_DOSE_SERIES', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'],\n",
" dtype = {\"VAX_DOSE_SERIES\": \"string\"})\n",
" }\n",
"\n",
"def readVaersDescrs(dataDir, years):\n",
" return [readVaersDescr(dataDir, year) for year in years]\n",
"\n",
"def readAllVaersDescrs(dataDir):\n",
" return readVaersDescrs(dataDir, [\"2021\", \"2022\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b5d6df0",
"metadata": {},
"outputs": [],
"source": [
"def createDataFrameFromDescr(vaersDescr):\n",
" return pd.merge(\n",
" vaersDescr['VAERSDATA'],\n",
" vaersDescr['VAERSVAX'],\n",
" how = 'left',\n",
" left_index = True,\n",
" right_index = True,\n",
" validate = 'one_to_many')\n",
"\n",
"def createDataFrameFromDescrs(vaersDescrs):\n",
" dataFrames = [createDataFrameFromDescr(vaersDescr) for vaersDescr in vaersDescrs]\n",
" return pd.concat(dataFrames)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ebcba86",
"metadata": {},
"outputs": [],
"source": [
"def filterDataFrame(df, manufacturer = None, dose = None):\n",
" isCovid19 = df[\"VAX_TYPE\"] == \"COVID19\"\n",
" isManufacturer = df[\"VAX_MANU\"] == manufacturer if manufacturer is not None else True\n",
" isDose = df[\"VAX_DOSE_SERIES\"].str.contains(dose) if dose is not None else True\n",
" return df[isCovid19 & isManufacturer & isDose]\n",
"\n",
"def filterDataFrameForSevereEffects(df, dose):\n",
" return filterDataFrame(df, dose = dose)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99945ca8",
"metadata": {},
"outputs": [],
"source": [
"def createBatchCodeTable(df : pd.DataFrame):\n",
" def filterDataFrame(df, col):\n",
" return df[df[col] == 'Y'][['VAX_LOT']]\n",
"\n",
" batchCodeTableDict = {\n",
" 'ADRs': df[['VAX_LOT']].value_counts(),\n",
" 'DEATHS': filterDataFrame(df, 'DIED').value_counts(),\n",
" 'DISABILITIES': filterDataFrame(df, 'DISABLE').value_counts(),\n",
" 'LIFE THREATENING ILLNESSES': filterDataFrame(df, 'L_THREAT').value_counts()\n",
" }\n",
" return pd.concat(batchCodeTableDict, axis = 'columns').replace(to_replace = np.nan, value = 0)\n",
"\n",
"def createManufacturerByBatchCodeTable(df):\n",
" manufacturerByBatchCodeTable = df[['VAX_LOT', 'VAX_MANU']]\n",
" manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.drop_duplicates(subset = ['VAX_LOT'])\n",
" return manufacturerByBatchCodeTable.set_index('VAX_LOT')\n",
"\n",
"def createCompanyByBatchCodeTable(df):\n",
" return createManufacturerByBatchCodeTable(df).rename(columns = {\"VAX_MANU\": \"COMPANY\"})\n",
"\n",
"# create table from https://www.howbadismybatch.com/combined.html\n",
"# FK-TODO: DRY with createBatchCodeTable()\n",
"def createSevereEffectsBatchCodeTable(df):\n",
" def filterDataFrame(df, col):\n",
" return df[df[col] == 'Y']['VAX_LOT']\n",
"\n",
" batchCodeTableDict = {\n",
" 'ADRs': df['VAX_LOT'].value_counts(),\n",
" 'DEATHS': filterDataFrame(df, 'DIED').value_counts(),\n",
" 'DISABILITIES': filterDataFrame(df, 'DISABLE').value_counts(),\n",
" 'LIFE THREATENING ILLNESSES': filterDataFrame(df, 'L_THREAT').value_counts(),\n",
" 'HOSPITALISATIONS': filterDataFrame(df, 'HOSPITAL').value_counts(),\n",
" 'EMERGENCY ROOM OR DOCTOR VISITS': filterDataFrame(df, 'ER_VISIT').value_counts()\n",
" }\n",
" batchCodeTable = pd.concat(batchCodeTableDict, axis = 'columns')\n",
" batchCodeTable.index.name = 'VAX_LOT'\n",
" # add Company column:\n",
" batchCodeTable = pd.merge(\n",
" batchCodeTable,\n",
" createCompanyByBatchCodeTable(df),\n",
" how = 'left',\n",
" left_index = True,\n",
" right_index = True,\n",
" validate = 'one_to_one')\n",
" return batchCodeTable.replace(to_replace = np.nan, value = 0)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3dacedfd",
"metadata": {},
"outputs": [],
"source": [
"import unittest"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e59a1825",
"metadata": {},
"outputs": [],
"source": [
"from pandas.testing import assert_frame_equal\n",
"\n",
"class CreateAndFilterDataFrameTest(unittest.TestCase):\n",
"\n",
" def test_createAndFilterDataFrameFromDescrs(self):\n",
" # Given\n",
" vaersDescrs = [\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ ['Y', np.NaN, np.NaN],\n",
" [np.NaN, np.NaN, 'Y']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['COVID19', 'MODERNA', '037K20A', '1'],\n",
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" },\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ [np.NaN, np.NaN, np.NaN],\n",
" [np.NaN, np.NaN, 'Y']],\n",
" index = [\n",
" \"1996873\",\n",
" \"1996874\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['HPV9', 'MERCK & CO. INC.', 'R017624', 'UNK'],\n",
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"1996873\",\n",
" \"1996874\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" }\n",
" ]\n",
" dataFrame = createDataFrameFromDescrs(vaersDescrs)\n",
" \n",
" # When\n",
" dataFrame = filterDataFrame(dataFrame, manufacturer = \"MODERNA\", dose = '1')\n",
" \n",
" # Then\n",
" dataFrameExpected = self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['Y', np.NaN, np.NaN, 'COVID19', 'MODERNA', '037K20A', '1'],\n",
" [np.NaN, np.NaN, 'Y', 'COVID19', 'MODERNA', '025L20A', '1'],\n",
" [np.NaN, np.NaN, 'Y', 'COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\",\n",
" \"1996874\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n",
"\n",
" def test_createDataFrameFromForSevereEffects(self):\n",
" # Given\n",
" vaersDescrs = [\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT'],\n",
" data = [ ['Y', 'Y', np.NaN, 'Y', 'Y'],\n",
" [np.NaN, np.NaN, 'Y', np.NaN, 'Y']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['COVID19', 'MODERNA', '037K20A', '1'],\n",
" ['COVID19', 'PFIZER\\BIONTECH', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" }\n",
" ]\n",
" dataFrame = createDataFrameFromDescrs(vaersDescrs)\n",
" \n",
" # When\n",
" dataFrame = filterDataFrameForSevereEffects(dataFrame, dose = '1')\n",
" \n",
" # Then\n",
" dataFrameExpected = self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['Y', 'Y', np.NaN, 'Y', 'Y', 'COVID19', 'MODERNA', '037K20A', '1'],\n",
" [np.NaN, np.NaN, 'Y', np.NaN, 'Y', 'COVID19', 'PFIZER\\BIONTECH', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n",
"\n",
" def test_createAndFilterDataFrameFromDescrsWithFirstDose(self):\n",
" # Given\n",
" vaersDescrs = [\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ ['Y', np.NaN, np.NaN]],\n",
" index = [\n",
" \"1048786\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['COVID19', 'MODERNA', '016M20A', '2'],\n",
" ['COVID19', 'MODERNA', '030L20A', '1']],\n",
" index = [\n",
" \"1048786\",\n",
" \"1048786\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" }\n",
" ]\n",
" dataFrame = createDataFrameFromDescrs(vaersDescrs)\n",
" \n",
" # When\n",
" dataFrame = filterDataFrame(dataFrame, manufacturer = \"MODERNA\", dose = '1')\n",
" \n",
" # Then\n",
" dataFrameExpected = self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['Y', np.NaN, np.NaN, 'COVID19', 'MODERNA', '030L20A', '1']],\n",
" index = [\n",
" \"1048786\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n",
"\n",
" def test_createAndFilterDataFrameFromDescrsWithSecondDose(self):\n",
" # Given\n",
" vaersDescrs = [\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ ['Y', np.NaN, np.NaN]],\n",
" index = [\n",
" \"1048786\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['COVID19', 'MODERNA', '016M20A', '2'],\n",
" ['COVID19', 'MODERNA', '030L20A', '1']],\n",
" index = [\n",
" \"1048786\",\n",
" \"1048786\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" }\n",
" ]\n",
" dataFrame = createDataFrameFromDescrs(vaersDescrs)\n",
" \n",
" # When\n",
" dataFrame = filterDataFrame(dataFrame, manufacturer = \"MODERNA\", dose = '2')\n",
" \n",
" # Then\n",
" dataFrameExpected = self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['Y', np.NaN, np.NaN, 'COVID19', 'MODERNA', '016M20A', '2']],\n",
" index = [\n",
" \"1048786\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n",
"\n",
" def createDataFrame(self, index, columns, data, dtypes = {}):\n",
" return pd.DataFrame(index = index, columns = columns, data = data).astype(dtypes)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e14465d7",
"metadata": {},
"outputs": [],
"source": [
"from pandas.testing import assert_frame_equal\n",
"\n",
"class BatchCodeTableTest(unittest.TestCase):\n",
"\n",
" def test_createBatchCodeTable2(self):\n",
" dataFrame = createDataFrameFromDescrs(\n",
" [\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ ['Y', np.NaN, np.NaN],\n",
" [np.NaN, np.NaN, 'Y']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['COVID19', 'MODERNA', '037K20A', '1'],\n",
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" },\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ [np.NaN, np.NaN, np.NaN],\n",
" [np.NaN, np.NaN, 'Y']],\n",
" index = [\n",
" \"1996873\",\n",
" \"1996874\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['HPV9', 'MERCK & CO. INC.', 'R017624', 'UNK'],\n",
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"1996873\",\n",
" \"1996874\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" }\n",
" ])\n",
" dataFrame = filterDataFrame(dataFrame, manufacturer = \"MODERNA\", dose = '1')\n",
" self._test_createBatchCodeTable(dataFrame);\n",
"\n",
" def test_createBatchCodeTable(self):\n",
" self._test_createBatchCodeTable(\n",
" filterDataFrame(\n",
" createDataFrameFromDescrs(\n",
" readAllVaersDescrs(\"test/VAERS\")),\n",
" manufacturer = \"MODERNA\",\n",
" dose = '1'))\n",
"\n",
" def _test_createBatchCodeTable(self, dataFrame):\n",
" # When\n",
" batchCodeTable = createBatchCodeTable(dataFrame)\n",
"\n",
" # Then\n",
" batchCodeTableExpected = pd.DataFrame(\n",
" data = {\n",
" 'ADRs': [2, 1],\n",
" 'DEATHS': [0, 1],\n",
" 'DISABILITIES': [2, 0],\n",
" 'LIFE THREATENING ILLNESSES': [0, 0]\n",
" },\n",
" index = pd.MultiIndex.from_arrays([['025L20A', '037K20A']], names = ('VAX_LOT',)))\n",
" assert_frame_equal(batchCodeTable, batchCodeTableExpected, check_dtype = False)\n",
"\n",
" def createDataFrame(self, index, columns, data, dtypes = {}):\n",
" return pd.DataFrame(index = index, columns = columns, data = data).astype(dtypes)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ded70c87",
"metadata": {},
"outputs": [],
"source": [
"from pandas.testing import assert_frame_equal\n",
"\n",
"class SevereEffectsBatchCodeTableTest(unittest.TestCase):\n",
"\n",
" def test_createSevereEffectsBatchCodeTable(self):\n",
" # Given\n",
" dataFrame = createDataFrameFromDescrs(\n",
" [\n",
" {\n",
" 'VAERSDATA': self.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT'],\n",
" data = [ ['Y', 'Y', np.NaN, 'Y', 'Y'],\n",
" [np.NaN, np.NaN, 'Y', np.NaN, 'Y']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"]),\n",
" 'VAERSVAX': self.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['COVID19', 'MODERNA', '037K20A', '1'],\n",
" ['COVID19', 'PFIZER\\BIONTECH', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" }\n",
" ]\n",
" )\n",
" dataFrame = filterDataFrameForSevereEffects(dataFrame, dose = '1')\n",
"\n",
" # When\n",
" batchCodeTable = createSevereEffectsBatchCodeTable(dataFrame)\n",
"\n",
" # Then\n",
" batchCodeTableExpected = pd.DataFrame(\n",
" data = {\n",
" 'ADRs': [1, 1],\n",
" 'DEATHS': [1, 0],\n",
" 'DISABILITIES': [0, 1],\n",
" 'LIFE THREATENING ILLNESSES': [1, 0],\n",
" 'HOSPITALISATIONS': [1, 0],\n",
" 'EMERGENCY ROOM OR DOCTOR VISITS': [1, 1],\n",
" 'COMPANY': ['MODERNA', 'PFIZER\\BIONTECH']\n",
" },\n",
" index = pd.Index(['037K20A', '025L20A'], name='VAX_LOT'))\n",
" assert_frame_equal(batchCodeTable, batchCodeTableExpected, check_dtype = False)\n",
"\n",
" def createDataFrame(self, index, columns, data, dtypes = {}):\n",
" return pd.DataFrame(index = index, columns = columns, data = data).astype(dtypes)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a8bff1b",
"metadata": {},
"outputs": [],
"source": [
"unittest.main(argv = [''], verbosity = 2, exit = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86e0e4f2",
"metadata": {},
"outputs": [],
"source": [
"def saveBatchCodeTable(manufacturer, excelFile):\n",
" batchCodeTable = createBatchCodeTable(\n",
" filterDataFrame(\n",
" createDataFrameFromDescrs(\n",
" readAllVaersDescrs(\"VAERS\")),\n",
" manufacturer = manufacturer,\n",
" dose = '1'))\n",
" display(manufacturer, batchCodeTable)\n",
" batchCodeTable.to_excel(excelFile)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab170c16",
"metadata": {},
"outputs": [],
"source": [
"saveBatchCodeTable(\"MODERNA\", \"results/moderna.xlsx\")\n",
"saveBatchCodeTable(\"PFIZER\\BIONTECH\", \"results/pfizer.xlsx\")\n",
"saveBatchCodeTable(\"JANSSEN\", \"results/janssen.xlsx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc56831d",
"metadata": {},
"outputs": [],
"source": [
"def saveSevereEffectsBatchCodeTable(excelFile):\n",
" severeEffectsBatchCodeTable = createSevereEffectsBatchCodeTable(\n",
" filterDataFrameForSevereEffects(\n",
" createDataFrameFromDescrs(\n",
" readAllVaersDescrs(\"VAERS\")),\n",
" dose = '1'))\n",
" display('severeEffectsBatchCodeTable', severeEffectsBatchCodeTable)\n",
" severeEffectsBatchCodeTable.to_excel(excelFile)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ace3fed9",
"metadata": {},
"outputs": [],
"source": [
"saveSevereEffectsBatchCodeTable('results/severeEffects.xlsx')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}