{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "9de5907f-18f5-4cb1-903e-26028ff1fa03", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "pd.set_option('display.max_rows', 100)\n", "pd.set_option('display.max_columns', None)" ] }, { "cell_type": "code", "execution_count": null, "id": "233bc590", "metadata": {}, "outputs": [], "source": [ "def createDataFrame(manufacturer):\n", " def read_csv(file):\n", " return pd.read_csv(file, index_col='VAERS_ID', encoding='latin1', low_memory=False)\n", " \n", " def createPatients():\n", " return pd.concat(\n", " [\n", " read_csv(\"VAERS/2021VAERSData/2021VAERSDATA.csv\"),\n", " read_csv(\"VAERS/2022VAERSData/2022VAERSDATA.csv\")\n", " ])\n", "\n", " def createVax(): \n", " return pd.concat(\n", " [\n", " read_csv(\"VAERS/2021VAERSData/2021VAERSVAX.csv\"),\n", " read_csv(\"VAERS/2022VAERSData/2022VAERSVAX.csv\")\n", " ])\n", "\n", " df_patients_vax = pd.merge(createPatients(), createVax(), left_index=True, right_index=True)\n", " return df_patients_vax[(df_patients_vax[\"VAX_TYPE\"] == \"COVID19\") & (df_patients_vax[\"VAX_MANU\"] == manufacturer)]" ] }, { "cell_type": "code", "execution_count": null, "id": "99945ca8", "metadata": {}, "outputs": [], "source": [ "def createPivotTable(df):\n", " def filter(df, col):\n", " return df[df[col]=='Y'][['VAX_LOT']]\n", "\n", " return pd.concat(\n", " {\n", " 'ADRs': df[['VAX_LOT']].value_counts(),\n", " 'DEATHS': filter(df, 'DIED').value_counts(),\n", " 'DISABILITIES': filter(df, 'DISABLE').value_counts(),\n", " 'LIFE THREATENING ILLNESSES': filter(df, 'L_THREAT').value_counts()\n", " },\n", " axis=1)" ] }, { "cell_type": "code", "execution_count": null, "id": "86e0e4f2", "metadata": {}, "outputs": [], "source": [ "df_moderna = createDataFrame(\"MODERNA\")" ] }, { "cell_type": "code", "execution_count": null, "id": "ab170c16", "metadata": {}, "outputs": [], "source": [ "df_moderna" ] }, { "cell_type": "code", "execution_count": null, "id": "d9191d12", "metadata": {}, "outputs": [], "source": [ "pivotTable = createPivotTable(df_moderna)" ] }, { "cell_type": "code", "execution_count": null, "id": "fdf2ab4b", "metadata": {}, "outputs": [], "source": [ "pivotTable" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }