jupyter notebook get VAERS data: - download data (e.g. 2022VAERSData.zip) from https://vaers.hhs.gov/data/datasets.html and save and unzip in VAERS folder FK-FIXME: - Anzahl 'DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL' und 'ER_VISIT' MÜSSEN immer noch korrekt gezählt werden nach createDataFrameFromDescr() FK-TODO: - rename project and html-page to VaccineAdverseEventInfo ? - move html pages to docs folder - publish all figures and tables (as interactive HTML-Pages?) - Vergleich Grippe mit Covid19: - https://www.bitchute.com/video/4HlIyBmOEJeY/ - https://www.bitchute.com/video/8wJYP2NpGwN2/ - https://www.howbad.info/expiry.html - https://www.howbadismybatch.com/moderna20A21A.pdf - https://www.howbadismybatch.com/deathbylottery.pdf - https://dailyexpose.uk/2021/10/31/100-percent-of-covid-19-vaccine-deaths-caused-by-just-5-percent-of-the-batches-produced/?fbclid=IwAR0U4RWwoehj2mEQpDixoQYfo9JpRhZvuP_6w4z_At2Z-Tez-EVvToW4PX4 - https://www.howbadismybatch.com/geography.html nachprogrammieren - handle VAX_DOSE_SERIES = 'UNK' or 'N/A' like '1'? - Format des jeweiligen Herstellers berücksichtigen und "verschmutzte" Einträge säubern, denn sie stellen alle dieselbe Charge dar: 039k20a MOD039K20A #039K20A 039K20A-MODERNA 039K20A-2A (vielleicht nicht) 039K20A or 039L Moderna/039K20A MODERNA 039K20A MODERNA039K20A Modena 039k20A L039K20A M039K20A MOD; 039K20A m0039k20A u039k20a 6/21 039K20A 2039K20A 013L20A 039K20A#039K20A #039K 039K20A 12-31- 039K20A & 031M2 039K20A and 032 039K20A, 011L20 df[df.index.duplicated(False)].to_excel('results/pfizer_duplicates.xlsx')