import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from PIL import Image import numpy as np import io # copied from value of characters variable in captcha_ocr.ipynb or captcha_ocr_trainAndSaveModel.ipynb characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'a', 'b', 'c', 'd', 'e', 'f'] img_width = 241 img_height = 62 downsample_factor = 4 # copied from value of max_length variable in captcha_ocr.ipynb or captcha_ocr_trainAndSaveModel.ipynb max_length = 6 char_to_num = layers.StringLookup( vocabulary=list(characters), mask_token=None) num_to_char = layers.StringLookup( vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True) def encode_single_sample(img_path): # 1. Read image img = tf.io.read_file(img_path) # 2. Decode and convert to grayscale img = tf.io.decode_png(img, channels=1) # 3. Convert to float32 in [0, 1] range img = tf.image.convert_image_dtype(img, tf.float32) # 4. Resize to the desired size img = tf.image.resize(img, [img_height, img_width]) # 5. Transpose the image because we want the time # dimension to correspond to the width of the image. img = tf.transpose(img, perm=[1, 0, 2]) # 7. Return a dict as our model is expecting two inputs return asSingleSampleBatch(img) def asSingleSampleBatch(img): array = keras.utils.img_to_array(img) array = np.expand_dims(array, axis=0) return array def decode_batch_predictions(pred): input_len = np.ones(pred.shape[0]) * pred.shape[1] # Use greedy search. For complex tasks, you can use beam search results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][:, :max_length] # Iterate over the results and get back the text output_text = [] for res in results: res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8") output_text.append(res) return output_text model = None def _getModel(): global model if model is None: print("loading model...") model = load_model() model.summary() return model def load_model(): _model = keras.models.load_model('model') __model = keras.models.Model( _model.get_layer(name="image").input, _model.get_layer(name="dense2").output) return __model def getTextInCaptchaImage(captchaImageFile): batchImages = encode_single_sample(captchaImageFile) preds = _getModel().predict(batchImages) return decode_batch_predictions(preds)[0]