refactoring
This commit is contained in:
@@ -1,18 +1,26 @@
|
||||
import numpy as np
|
||||
from skspatial.objects import Line
|
||||
|
||||
# implementation of "Robust Multiple Structures Estimation with J-linkage"
|
||||
# implementation of "Robust Multiple Structures Estimation with J-linkage" adapted from https://github.com/fkluger/vp-linkage
|
||||
class MultiLineFitter:
|
||||
|
||||
@staticmethod
|
||||
def fitLines(points, lines, consensusThreshold):
|
||||
preferenceMatrix = MultiLineFitter._createPreferenceMatrix(points, lines, consensusThreshold)
|
||||
_, preferenceMatrix4Clusters = MultiLineFitter.createClusters(preferenceMatrix)
|
||||
_, preferenceMatrix4Clusters = MultiLineFitter._createClusters(preferenceMatrix)
|
||||
lineIndexes = MultiLineFitter._getLineIndexes(preferenceMatrix4Clusters)
|
||||
return [lines[lineIndex] for lineIndex in lineIndexes]
|
||||
|
||||
@staticmethod
|
||||
def createClusters(preferenceMatrix):
|
||||
def _createPreferenceMatrix(points, lines, consensusThreshold):
|
||||
preferenceMatrix = np.zeros([len(points), len(lines)], dtype = int)
|
||||
for pointIndex, point in enumerate(points):
|
||||
for lineIndex, line in enumerate(lines):
|
||||
preferenceMatrix[pointIndex, lineIndex] = 1 if line.distance_point(point) <= consensusThreshold else 0
|
||||
return preferenceMatrix
|
||||
|
||||
@staticmethod
|
||||
def _createClusters(preferenceMatrix):
|
||||
keepClustering = True
|
||||
numClusters = preferenceMatrix.shape[0]
|
||||
clusters = [[i] for i in range(numClusters)]
|
||||
@@ -40,14 +48,6 @@ class MultiLineFitter:
|
||||
|
||||
return clusters, preferenceMatrix
|
||||
|
||||
@staticmethod
|
||||
def _createPreferenceMatrix(points, lines, consensusThreshold):
|
||||
preferenceMatrix = np.zeros([len(points), len(lines)], dtype = int)
|
||||
for pointIndex, point in enumerate(points):
|
||||
for lineIndex, line in enumerate(lines):
|
||||
preferenceMatrix[pointIndex, lineIndex] = 1 if line.distance_point(point) <= consensusThreshold else 0
|
||||
return preferenceMatrix
|
||||
|
||||
@staticmethod
|
||||
def _intersectionOverUnion(setA, setB):
|
||||
intersection = np.count_nonzero(np.logical_and(setA, setB))
|
||||
|
||||
@@ -55,7 +55,7 @@ class MultiLineFitterTest(unittest.TestCase):
|
||||
])
|
||||
|
||||
# When
|
||||
clusters, _ = MultiLineFitter.createClusters(preferenceMatrix)
|
||||
clusters, _ = MultiLineFitter._createClusters(preferenceMatrix)
|
||||
|
||||
# Then
|
||||
np.testing.assert_array_equal(
|
||||
@@ -77,7 +77,7 @@ class MultiLineFitterTest(unittest.TestCase):
|
||||
])
|
||||
|
||||
# When
|
||||
clusters, _ = MultiLineFitter.createClusters(preferenceMatrix)
|
||||
clusters, _ = MultiLineFitter._createClusters(preferenceMatrix)
|
||||
|
||||
# Then
|
||||
np.testing.assert_array_equal(
|
||||
@@ -107,9 +107,13 @@ class MultiLineFitterTest(unittest.TestCase):
|
||||
points = [(1, 0), (2, 0), (3, 0), (1, 1), (2, 2), (3, 3)]
|
||||
line1 = Line.from_points([0, 0], [1, 0])
|
||||
line2 = Line.from_points([0, 0], [1, 1])
|
||||
line3 = Line.from_points([0, 0], [0, 1])
|
||||
|
||||
# When
|
||||
fittedLines = MultiLineFitter.fitLines(points, lines = [line1, line2], consensusThreshold = 0.001)
|
||||
fittedLines = MultiLineFitter.fitLines(points, lines = [line1, line2, line3], consensusThreshold = 0.001)
|
||||
|
||||
# Then
|
||||
np.testing.assert_array_equal(fittedLines, [line1, line2])
|
||||
|
||||
#FK-TODO: erzeuge LinesFactory.createLines(points = [(1, 0), (2, 0), (3, 0), (1, 1), (2, 2), (3, 3)])
|
||||
# Diese Funktion soll alle Linien erzeugen, die jeweils zwei verschiedene Punkte aus points verbinden.
|
||||
Reference in New Issue
Block a user