refactoring

This commit is contained in:
frankknoll
2023-11-17 07:45:20 +01:00
parent fe7c2b1c88
commit fcd8614420
2 changed files with 18 additions and 14 deletions

View File

@@ -1,18 +1,26 @@
import numpy as np
from skspatial.objects import Line
# implementation of "Robust Multiple Structures Estimation with J-linkage"
# implementation of "Robust Multiple Structures Estimation with J-linkage" adapted from https://github.com/fkluger/vp-linkage
class MultiLineFitter:
@staticmethod
def fitLines(points, lines, consensusThreshold):
preferenceMatrix = MultiLineFitter._createPreferenceMatrix(points, lines, consensusThreshold)
_, preferenceMatrix4Clusters = MultiLineFitter.createClusters(preferenceMatrix)
_, preferenceMatrix4Clusters = MultiLineFitter._createClusters(preferenceMatrix)
lineIndexes = MultiLineFitter._getLineIndexes(preferenceMatrix4Clusters)
return [lines[lineIndex] for lineIndex in lineIndexes]
@staticmethod
def createClusters(preferenceMatrix):
def _createPreferenceMatrix(points, lines, consensusThreshold):
preferenceMatrix = np.zeros([len(points), len(lines)], dtype = int)
for pointIndex, point in enumerate(points):
for lineIndex, line in enumerate(lines):
preferenceMatrix[pointIndex, lineIndex] = 1 if line.distance_point(point) <= consensusThreshold else 0
return preferenceMatrix
@staticmethod
def _createClusters(preferenceMatrix):
keepClustering = True
numClusters = preferenceMatrix.shape[0]
clusters = [[i] for i in range(numClusters)]
@@ -40,14 +48,6 @@ class MultiLineFitter:
return clusters, preferenceMatrix
@staticmethod
def _createPreferenceMatrix(points, lines, consensusThreshold):
preferenceMatrix = np.zeros([len(points), len(lines)], dtype = int)
for pointIndex, point in enumerate(points):
for lineIndex, line in enumerate(lines):
preferenceMatrix[pointIndex, lineIndex] = 1 if line.distance_point(point) <= consensusThreshold else 0
return preferenceMatrix
@staticmethod
def _intersectionOverUnion(setA, setB):
intersection = np.count_nonzero(np.logical_and(setA, setB))