refactoring

This commit is contained in:
frankknoll
2022-11-22 12:40:26 +01:00
parent 134a133da1
commit e87fe0c8ba
21 changed files with 692 additions and 731 deletions

1
.gitignore vendored
View File

@@ -13,3 +13,4 @@ docs/data/*.html
src/captchaImage.jpeg src/captchaImage.jpeg
src/HowBadIsMyBatch.nbconvert.ipynb src/HowBadIsMyBatch.nbconvert.ipynb
src/HowBadIsMyBatch.nbconvert.html src/HowBadIsMyBatch.nbconvert.html
src/__pycache__/

11
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,11 @@
{
"python.testing.unittestArgs": [
"-v",
"-s",
"./src",
"-p",
"*Test.py"
],
"python.testing.pytestEnabled": false,
"python.testing.unittestEnabled": true
}

View File

@@ -0,0 +1,45 @@
import pandas as pd
from CompanyColumnAdder import CompanyColumnAdder
from SummationTableFactory import SummationTableFactory
class BatchCodeTableFactory:
def __init__(self, dataFrame: pd.DataFrame):
self.dataFrame = dataFrame
self.companyColumnAdder = CompanyColumnAdder(dataFrame)
self.countryBatchCodeTable = SummationTableFactory.createSummationTable(
dataFrame.groupby(
[
dataFrame['COUNTRY'],
dataFrame['VAX_LOT']
]))
def createGlobalBatchCodeTable(self):
return self._postProcess(SummationTableFactory.createSummationTable(self.dataFrame.groupby('VAX_LOT')))
def createBatchCodeTableByCountry(self, country):
return self._postProcess(self._getBatchCodeTableByCountry(country))
def _postProcess(self, batchCodeTable):
batchCodeTable = self.companyColumnAdder.addCompanyColumn(batchCodeTable)
batchCodeTable = batchCodeTable[
[
'Adverse Reaction Reports',
'Deaths',
'Disabilities',
'Life Threatening Illnesses',
'Company',
'Countries',
'Severe reports',
'Lethality'
]]
return batchCodeTable.sort_values(by = 'Severe reports', ascending = False)
def _getBatchCodeTableByCountry(self, country):
if country in self.countryBatchCodeTable.index:
return self.countryBatchCodeTable.loc[country]
else:
return self._getEmptyBatchCodeTable()
def _getEmptyBatchCodeTable(self):
return self.countryBatchCodeTable[0:0].droplevel(0)

View File

@@ -0,0 +1,106 @@
import unittest
import pandas as pd
from pandas.testing import assert_frame_equal
from TestHelper import TestHelper
from SevereColumnAdder import SevereColumnAdder
from BatchCodeTableFactory import BatchCodeTableFactory
class BatchCodeTableFactoryTest(unittest.TestCase):
def test_createBatchCodeTableByCountry(self):
# Given
dataFrame = TestHelper.createDataFrame(
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],
data = [ [1, 0, 0, 'COVID19', 'PFIZER\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],
[0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
[1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
[0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],
index = [
"1048786",
"1048786",
"4711",
"0815"])
dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)
batchCodeTableFactory = BatchCodeTableFactory(dataFrame)
# When
batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('France')
# Then
assert_frame_equal(
batchCodeTable,
TestHelper.createDataFrame(
columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],
data = [ [2, 1, 2, 2, 'MODERNA', 'France', 2/2 * 100, 1/2 * 100],
[1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],
index = pd.Index(
[
'030L20B',
'030L20A'
],
name = 'VAX_LOT')),
check_dtype = False)
def test_createGlobalBatchCodeTable(self):
# Given
dataFrame = TestHelper.createDataFrame(
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],
data = [ [1, 0, 0, 'COVID19', 'PFIZER\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],
[0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
[1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
[0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'United Kingdom']],
index = [
"1048786",
"1048786",
"4711",
"0815"])
dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)
batchCodeTableFactory = BatchCodeTableFactory(dataFrame)
# When
batchCodeTable = batchCodeTableFactory.createGlobalBatchCodeTable()
# Then
assert_frame_equal(
batchCodeTable,
TestHelper.createDataFrame(
columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],
data = [ [1, 1, 0, 0, 'PFIZER\BIONTECH', 'United Kingdom', 1/1 * 100, 1/1 * 100],
[2, 1, 2, 2, 'MODERNA', 'France, United Kingdom', 2/2 * 100, 1/2 * 100],
[1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],
index = pd.Index(
[
'016M20A',
'030L20B',
'030L20A'
],
name = 'VAX_LOT')),
check_dtype = False)
def test_createBatchCodeTableByNonExistingCountry(self):
# Given
dataFrame = TestHelper.createDataFrame(
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],
data = [ [1, 0, 0, 'COVID19', 'PFIZER\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],
[0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
[1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
[0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],
index = [
"1048786",
"1048786",
"4711",
"0815"])
dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)
batchCodeTableFactory = BatchCodeTableFactory(dataFrame)
# When
batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('non existing country')
# Then
assert_frame_equal(
batchCodeTable,
TestHelper.createDataFrame(
columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],
data = [ ],
index = pd.Index([], name = 'VAX_LOT')),
check_dtype = False)

21
src/CompanyColumnAdder.py Normal file
View File

@@ -0,0 +1,21 @@
import pandas as pd
class CompanyColumnAdder:
def __init__(self, dataFrame_VAX_LOT_VAX_MANU):
self.dataFrame_VAX_LOT_VAX_MANU = dataFrame_VAX_LOT_VAX_MANU
def addCompanyColumn(self, batchCodeTable):
return pd.merge(
batchCodeTable,
self._createCompanyByBatchCodeTable(),
how = 'left',
left_index = True,
right_index = True,
validate = 'one_to_one')
def _createCompanyByBatchCodeTable(self):
manufacturerByBatchCodeTable = self.dataFrame_VAX_LOT_VAX_MANU[['VAX_LOT', 'VAX_MANU']]
manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.drop_duplicates(subset = ['VAX_LOT'])
manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.set_index('VAX_LOT')
return manufacturerByBatchCodeTable.rename(columns = {"VAX_MANU": "Company"})

25
src/CountryColumnAdder.py Normal file
View File

@@ -0,0 +1,25 @@
import pycountry
class CountryColumnAdder:
@staticmethod
def addCountryColumn(dataFrame):
dataFrame['COUNTRY'] = CountryColumnAdder.getCountryColumn(dataFrame)
return dataFrame.astype({'COUNTRY': "string"})
@staticmethod
def getCountryColumn(dataFrame):
return dataFrame.apply(
lambda row:
CountryColumnAdder._getCountryNameOfSplttypeOrDefault(
splttype = row['SPLTTYPE'],
default = 'Unknown Country'),
axis = 'columns')
@staticmethod
def _getCountryNameOfSplttypeOrDefault(splttype, default):
if not isinstance(splttype, str):
return default
country = pycountry.countries.get(alpha_2 = splttype[:2])
return country.name if country is not None else default

View File

@@ -0,0 +1,21 @@
from bs4 import BeautifulSoup
class CountryOptionsSetter:
def setCountryOptions(self, html, options):
soup = self._setCountryOptions(self._parse(html), self._parseOptions(options))
return str(soup)
def _setCountryOptions(self, soup, options):
countrySelect = soup.find(id = "countrySelect")
countrySelect.clear()
for option in options:
countrySelect.append(option)
return soup
def _parseOptions(self, options):
return [self._parse(option).option for option in options]
def _parse(self, html):
return BeautifulSoup(html, 'lxml')

View File

@@ -0,0 +1,73 @@
import unittest
from CountryOptionsSetter import CountryOptionsSetter
class CountryOptionsSetterTest(unittest.TestCase):
def test_setCountryOptions(self):
# Given
countryOptionsSetter = CountryOptionsSetter()
# When
htmlActual = countryOptionsSetter.setCountryOptions(
html='''
<html>
<body>
<p>Test<p/>
<select id="countrySelect" name="country">
<option value="Global" selected>Global</option>
<option value="Afghanistan">Afghanistan</option>
<option value="Albania">Albania</option>
<option value="Algeria">Algeria</option>
</select>
</body>
</html>
''',
options=[
'<option value="Global" selected>Global</option>',
'<option value="Azerbaijan">Azerbaijan</option>',
'<option value="Bahrain">Bahrain</option>'])
# Then
assertEqualHTML(
htmlActual,
'''
<html>
<body>
<p>Test<p/>
<select id="countrySelect" name="country">
<option value="Global" selected>Global</option>
<option value="Azerbaijan">Azerbaijan</option>
<option value="Bahrain">Bahrain</option>
</select>
</body>
</html>
''')
# adapted from https://stackoverflow.com/questions/8006909/pretty-print-assertequal-for-html-strings
def assertEqualHTML(string1, string2, file1='', file2=''):
u'''
Compare two unicode strings containing HTML.
A human friendly diff goes to logging.error() if they
are not equal, and an exception gets raised.
'''
from bs4 import BeautifulSoup as bs
import difflib
def short(mystr):
max = 20
if len(mystr) > max:
return mystr[:max]
return mystr
p = []
for mystr, file in [(string1, file1), (string2, file2)]:
if not isinstance(mystr, str):
raise Exception(u'string ist not unicode: %r %s' %
(short(mystr), file))
soup = bs(mystr, 'lxml')
pretty = soup.prettify()
p.append(pretty)
if p[0] != p[1]:
for line in difflib.unified_diff(p[0].splitlines(), p[1].splitlines(), fromfile=file1, tofile=file2):
display(line)
display(p[0], ' != ', p[1])
raise Exception('Not equal %s %s' % (file1, file2))

9
src/DataFrameFilter.py Normal file
View File

@@ -0,0 +1,9 @@
import pandas as pd
class DataFrameFilter:
def filterByCovid19(self, dataFrame):
return dataFrame[self._isCovid19(dataFrame)]
def _isCovid19(self, dataFrame):
return dataFrame["VAX_TYPE"] == "COVID19"

View File

@@ -0,0 +1,64 @@
import unittest
from pandas.testing import assert_frame_equal
from VaersDescr2DataFrameConverter import VaersDescr2DataFrameConverter
from TestHelper import TestHelper
from DataFrameFilter import DataFrameFilter
class DataFrameFilterTest(unittest.TestCase):
def test_filterByCovid19(self):
# Given
dataFrame = VaersDescr2DataFrameConverter.createDataFrameFromDescrs(
[
{
'VAERSDATA': TestHelper.createDataFrame(
columns = ['DIED', 'L_THREAT', 'DISABLE'],
data = [ [1, 0, 0],
[0, 0, 1]],
index = [
"0916600",
"0916601"]),
'VAERSVAX': TestHelper.createDataFrame(
columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],
data = [ ['COVID19', 'MODERNA', '037K20A', '1'],
['COVID19', 'MODERNA', '025L20A', '1']],
index = [
"0916600",
"0916601"],
dtypes = {'VAX_DOSE_SERIES': "string"})
},
{
'VAERSDATA': TestHelper.createDataFrame(
columns = ['DIED', 'L_THREAT', 'DISABLE'],
data = [ [0, 0, 0],
[0, 0, 1]],
index = [
"1996873",
"1996874"]),
'VAERSVAX': TestHelper.createDataFrame(
columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],
data = [ ['HPV9', 'MERCK & CO. INC.', 'R017624', 'UNK'],
['COVID19', 'MODERNA', '025L20A', '1']],
index = [
"1996873",
"1996874"],
dtypes = {'VAX_DOSE_SERIES': "string"})
}
])
dataFrameFilter = DataFrameFilter()
# When
dataFrame = dataFrameFilter.filterByCovid19(dataFrame)
# Then
dataFrameExpected = TestHelper.createDataFrame(
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],
data = [ [1, 0, 0, 'COVID19', 'MODERNA', '037K20A', '1'],
[0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1'],
[0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1']],
index = [
"0916600",
"0916601",
"1996874"],
dtypes = {'VAX_DOSE_SERIES': "string"})
assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)

View File

@@ -0,0 +1,40 @@
import numpy as np
class DataFrameNormalizer:
@staticmethod
def normalize(dataFrame):
DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)
DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)
DataFrameNormalizer._convertColumnsOfDataFrame_Y_to_1_else_0(
dataFrame,
['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT'])
@staticmethod
def convertVAX_LOTColumnToUpperCase(dataFrame):
dataFrame['VAX_LOT'] = dataFrame['VAX_LOT'].str.upper()
@staticmethod
def removeUnknownBatchCodes(dataFrame):
dataFrame.drop(DataFrameNormalizer._isUnknownBatchCode(dataFrame).index, inplace = True)
@staticmethod
def _isUnknownBatchCode(dataFrame):
return dataFrame[dataFrame['VAX_LOT'].str.contains(pat = 'UNKNOWN', regex = False, case = False, na = False)]
@staticmethod
def _convertColumnsOfDataFrame_Y_to_1_else_0(dataFrame, columns):
for column in columns:
DataFrameNormalizer._convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column)
@staticmethod
def _convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column):
dataFrame[column] = DataFrameNormalizer._where(
condition = dataFrame[column] == 'Y',
trueValue = 1,
falseValue = 0)
@staticmethod
def _where(condition, trueValue, falseValue):
return np.where(condition, trueValue, falseValue)

View File

@@ -0,0 +1,63 @@
import unittest
from DataFrameNormalizer import DataFrameNormalizer
from TestHelper import TestHelper
from pandas.testing import assert_frame_equal
import numpy as np
class DataFrameNormalizerTest(unittest.TestCase):
def test_convertVAX_LOTColumnToUpperCase(self):
# Given
dataFrame = TestHelper.createDataFrame(
columns = ['VAX_LOT'],
data = [ ['037K20A'],
['025l20A'],
['025L20A']],
index = [
"0916600",
"0916601",
"1996874"])
# When
DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)
# Then
dataFrameExpected = TestHelper.createDataFrame(
columns = ['VAX_LOT'],
data = [ ['037K20A'],
['025L20A'],
['025L20A']],
index = [
"0916600",
"0916601",
"1996874"])
assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)
def test_removeUnknownBatchCodes(self):
# Given
dataFrame = TestHelper.createDataFrame(
columns = ['VAX_LOT'],
data = [ ['UNKNOWN'],
['N/A Unknown'],
[np.nan],
['UNKNOWN TO ME'],
['030L20B']],
index = [
"1048786",
"1048786",
"123",
"4711",
"0815"])
# When
DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)
# Then
dataFrameExpected = TestHelper.createDataFrame(
columns = ['VAX_LOT'],
data = [ [np.nan],
['030L20B']],
index = [
"123",
"0815"])
assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)

42
src/DateProvider.py Normal file
View File

@@ -0,0 +1,42 @@
from bs4 import BeautifulSoup
import requests
import re
from datetime import datetime
class DateProvider:
DATE_FORMAT = "%B %d, %Y"
def __init__(self):
self.lastUpdated = None
self.lastUpdatedDataSource = None
def needsUpdate(self):
return self.getLastUpdated() < self.getLastUpdatedDataSource()
def getLastUpdated(self):
if self.lastUpdated is None:
self.lastUpdated = self.__getLastUpdated(
url="https://knollfrank.github.io/HowBadIsMyBatch/batchCodeTable.html",
getDateStr=lambda soup: soup.find(id="last_updated").text)
return self.lastUpdated
def getLastUpdatedDataSource(self):
if self.lastUpdatedDataSource is None:
def getDateStr(soup):
lastUpdated = soup.find(string=re.compile("Last updated"))
return re.search('Last updated: (.+).', lastUpdated).group(1)
self.lastUpdatedDataSource = self.__getLastUpdated(
url="https://vaers.hhs.gov/data/datasets.html",
getDateStr=getDateStr)
return self.lastUpdatedDataSource
def __getLastUpdated(self, url, getDateStr):
htmlContent = requests.get(url).text
soup = BeautifulSoup(htmlContent, "lxml")
dateStr = getDateStr(soup)
return datetime.strptime(dateStr, DateProvider.DATE_FORMAT)

View File

@@ -26,56 +26,6 @@
"print(datetime.now().strftime(\"%d.%m.%Y, %H:%M:%S Uhr\"))" "print(datetime.now().strftime(\"%d.%m.%Y, %H:%M:%S Uhr\"))"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"id": "1dbf9321",
"metadata": {},
"outputs": [],
"source": [
"from bs4 import BeautifulSoup\n",
"import requests\n",
"import re\n",
"from datetime import datetime\n",
"\n",
"class DateProvider:\n",
" \n",
" DATE_FORMAT = \"%B %d, %Y\"\n",
"\n",
" def __init__(self):\n",
" self.lastUpdated = None\n",
" self.lastUpdatedDataSource = None\n",
"\n",
" def needsUpdate(self):\n",
" return self.getLastUpdated() < self.getLastUpdatedDataSource()\n",
" \n",
" def getLastUpdated(self):\n",
" if self.lastUpdated is None:\n",
" self.lastUpdated = self.__getLastUpdated(\n",
" url = \"https://knollfrank.github.io/HowBadIsMyBatch/batchCodeTable.html\",\n",
" getDateStr = lambda soup: soup.find(id = \"last_updated\").text)\n",
" \n",
" return self.lastUpdated\n",
"\n",
" def getLastUpdatedDataSource(self):\n",
" if self.lastUpdatedDataSource is None:\n",
" def getDateStr(soup):\n",
" lastUpdated = soup.find(string = re.compile(\"Last updated\"))\n",
" return re.search('Last updated: (.+).', lastUpdated).group(1)\n",
"\n",
" self.lastUpdatedDataSource = self.__getLastUpdated(\n",
" url = \"https://vaers.hhs.gov/data/datasets.html\",\n",
" getDateStr = getDateStr)\n",
"\n",
" return self.lastUpdatedDataSource\n",
"\n",
" def __getLastUpdated(self, url, getDateStr):\n",
" htmlContent = requests.get(url).text\n",
" soup = BeautifulSoup(htmlContent, \"lxml\")\n",
" dateStr = getDateStr(soup)\n",
" return datetime.strptime(dateStr, DateProvider.DATE_FORMAT)"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
@@ -83,6 +33,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from DateProvider import DateProvider\n",
"dateProvider = DateProvider()\n", "dateProvider = DateProvider()\n",
"print(' lastUpdated:', dateProvider.getLastUpdated())\n", "print(' lastUpdated:', dateProvider.getLastUpdated())\n",
"print('lastUpdatedDataSource:', dateProvider.getLastUpdatedDataSource()) \n", "print('lastUpdatedDataSource:', dateProvider.getLastUpdatedDataSource()) \n",
@@ -396,48 +347,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import pandas as pd\n", "from VaersDescrReader import VaersDescrReader\n"
"\n",
"class VaersDescrReader:\n",
" \n",
" def __init__(self, dataDir):\n",
" self.dataDir = dataDir\n",
"\n",
" def readVaersDescrsForYears(self, years):\n",
" return [self.readVaersDescrForYear(year) for year in years]\n",
"\n",
" def readVaersDescrForYear(self, year):\n",
" return {\n",
" 'VAERSDATA': self._readVAERSDATA('{dataDir}/{year}VAERSDATA.csv'.format(dataDir = self.dataDir, year = year)),\n",
" 'VAERSVAX': self._readVAERSVAX('{dataDir}/{year}VAERSVAX.csv'.format(dataDir = self.dataDir, year = year))\n",
" }\n",
"\n",
" def readNonDomesticVaersDescr(self):\n",
" return {\n",
" 'VAERSDATA': self._readVAERSDATA(self.dataDir + \"/NonDomesticVAERSDATA.csv\"),\n",
" 'VAERSVAX': self._readVAERSVAX(self.dataDir + \"/NonDomesticVAERSVAX.csv\")\n",
" }\n",
"\n",
" def _readVAERSDATA(self, file):\n",
" return self._read_csv(\n",
" file = file,\n",
" usecols = ['VAERS_ID', 'RECVDATE', 'DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT', 'SPLTTYPE'],\n",
" parse_dates = ['RECVDATE'],\n",
" date_parser = lambda dateStr: pd.to_datetime(dateStr, format = \"%m/%d/%Y\"))\n",
"\n",
" def _readVAERSVAX(self, file):\n",
" return self._read_csv(\n",
" file = file,\n",
" usecols = ['VAERS_ID', 'VAX_DOSE_SERIES', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'],\n",
" dtype = {\"VAX_DOSE_SERIES\": \"string\"})\n",
"\n",
" def _read_csv(self, file, **kwargs):\n",
" return pd.read_csv(\n",
" file,\n",
" index_col = 'VAERS_ID',\n",
" encoding = 'latin1',\n",
" low_memory = False,\n",
" **kwargs)\n"
] ]
}, },
{ {
@@ -447,24 +357,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import pandas as pd\n", "from VaersDescr2DataFrameConverter import VaersDescr2DataFrameConverter"
"\n",
"class VaersDescr2DataFrameConverter:\n",
"\n",
" @staticmethod\n",
" def createDataFrameFromDescr(vaersDescr):\n",
" return pd.merge(\n",
" vaersDescr['VAERSDATA'],\n",
" vaersDescr['VAERSVAX'],\n",
" how = 'left',\n",
" left_index = True,\n",
" right_index = True,\n",
" validate = 'one_to_many')\n",
"\n",
" @staticmethod\n",
" def createDataFrameFromDescrs(vaersDescrs):\n",
" dataFrames = [VaersDescr2DataFrameConverter.createDataFrameFromDescr(vaersDescr) for vaersDescr in vaersDescrs]\n",
" return pd.concat(dataFrames)\n"
] ]
}, },
{ {
@@ -474,44 +367,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"class DataFrameNormalizer:\n", "from DataFrameNormalizer import DataFrameNormalizer"
" \n",
" @staticmethod\n",
" def normalize(dataFrame):\n",
" DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)\n",
" DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)\n",
" DataFrameNormalizer._convertColumnsOfDataFrame_Y_to_1_else_0(\n",
" dataFrame,\n",
" ['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT'])\n",
"\n",
" @staticmethod\n",
" def convertVAX_LOTColumnToUpperCase(dataFrame):\n",
" dataFrame['VAX_LOT'] = dataFrame['VAX_LOT'].str.upper()\n",
"\n",
" @staticmethod\n",
" def removeUnknownBatchCodes(dataFrame):\n",
" dataFrame.drop(DataFrameNormalizer._isUnknownBatchCode(dataFrame).index, inplace = True)\n",
"\n",
" @staticmethod\n",
" def _isUnknownBatchCode(dataFrame):\n",
" return dataFrame[dataFrame['VAX_LOT'].str.contains(pat = 'UNKNOWN', regex = False, case = False, na = False)]\n",
"\n",
" @staticmethod\n",
" def _convertColumnsOfDataFrame_Y_to_1_else_0(dataFrame, columns):\n",
" for column in columns:\n",
" DataFrameNormalizer._convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column)\n",
"\n",
" @staticmethod\n",
" def _convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column):\n",
" dataFrame[column] = DataFrameNormalizer._where(\n",
" condition = dataFrame[column] == 'Y',\n",
" trueValue = 1,\n",
" falseValue = 0)\n",
"\n",
" @staticmethod\n",
" def _where(condition, trueValue, falseValue):\n",
" return np.where(condition, trueValue, falseValue) \n",
" "
] ]
}, },
{ {
@@ -521,53 +377,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import pandas as pd\n", "from DataFrameFilter import DataFrameFilter"
"\n",
"class DataFrameFilter:\n",
" \n",
" def filterByCovid19(self, dataFrame):\n",
" return dataFrame[self._isCovid19(dataFrame)]\n",
"\n",
" def _isCovid19(self, dataFrame):\n",
" return dataFrame[\"VAX_TYPE\"] == \"COVID19\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c62cfaff",
"metadata": {},
"outputs": [],
"source": [
"class SummationTableFactory:\n",
"\n",
" @staticmethod\n",
" def createSummationTable(dataFrame):\n",
" summationTable = dataFrame.agg(\n",
" **{\n",
" 'Deaths': pd.NamedAgg(column = 'DIED', aggfunc = 'sum'),\n",
" 'Adverse Reaction Reports': pd.NamedAgg(column = 'DIED', aggfunc = 'size'),\n",
" 'Life Threatening Illnesses': pd.NamedAgg(column = 'L_THREAT', aggfunc = 'sum'), \n",
" 'Disabilities': pd.NamedAgg(column = 'DISABLE', aggfunc = 'sum'),\n",
" 'Severities': pd.NamedAgg(column = 'SEVERE', aggfunc = 'sum'),\n",
" 'Countries': pd.NamedAgg(column = 'COUNTRY', aggfunc = SummationTableFactory.countries2str)\n",
" })\n",
" summationTable['Severe reports'] = summationTable['Severities'] / summationTable['Adverse Reaction Reports'] * 100\n",
" summationTable['Lethality'] = summationTable['Deaths'] / summationTable['Adverse Reaction Reports'] * 100\n",
" return summationTable[\n",
" [\n",
" 'Adverse Reaction Reports',\n",
" 'Deaths',\n",
" 'Disabilities',\n",
" 'Life Threatening Illnesses',\n",
" 'Severe reports',\n",
" 'Lethality',\n",
" 'Countries'\n",
" ]]\n",
"\n",
" @staticmethod\n",
" def countries2str(countries):\n",
" return ', '.join(sorted(set(countries)))"
] ]
}, },
{ {
@@ -577,31 +387,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import pycountry\n", "from CountryColumnAdder import CountryColumnAdder"
"\n",
"class CountryColumnAdder:\n",
" \n",
" @staticmethod\n",
" def addCountryColumn(dataFrame):\n",
" dataFrame['COUNTRY'] = CountryColumnAdder.getCountryColumn(dataFrame)\n",
" return dataFrame.astype({'COUNTRY': \"string\"})\n",
"\n",
" @staticmethod\n",
" def getCountryColumn(dataFrame):\n",
" return dataFrame.apply(\n",
" lambda row:\n",
" CountryColumnAdder._getCountryNameOfSplttypeOrDefault(\n",
" splttype = row['SPLTTYPE'],\n",
" default = 'Unknown Country'),\n",
" axis = 'columns')\n",
"\n",
" @staticmethod\n",
" def _getCountryNameOfSplttypeOrDefault(splttype, default):\n",
" if not isinstance(splttype, str):\n",
" return default\n",
" \n",
" country = pycountry.countries.get(alpha_2 = splttype[:2])\n",
" return country.name if country is not None else default"
] ]
}, },
{ {
@@ -611,41 +397,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"class SevereColumnAdder:\n", "from SevereColumnAdder import SevereColumnAdder"
" \n",
" @staticmethod\n",
" def addSevereColumn(dataFrame):\n",
" dataFrame['SEVERE'] = (dataFrame['DIED'] + dataFrame['L_THREAT'] + dataFrame['DISABLE']) > 0\n",
" dataFrame['SEVERE'].replace({True: 1, False: 0}, inplace = True)\n",
" return dataFrame\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2dad09e5",
"metadata": {},
"outputs": [],
"source": [
"class CompanyColumnAdder:\n",
" \n",
" def __init__(self, dataFrame_VAX_LOT_VAX_MANU):\n",
" self.dataFrame_VAX_LOT_VAX_MANU = dataFrame_VAX_LOT_VAX_MANU\n",
"\n",
" def addCompanyColumn(self, batchCodeTable):\n",
" return pd.merge(\n",
" batchCodeTable,\n",
" self._createCompanyByBatchCodeTable(),\n",
" how = 'left',\n",
" left_index = True,\n",
" right_index = True,\n",
" validate = 'one_to_one')\n",
"\n",
" def _createCompanyByBatchCodeTable(self):\n",
" manufacturerByBatchCodeTable = self.dataFrame_VAX_LOT_VAX_MANU[['VAX_LOT', 'VAX_MANU']]\n",
" manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.drop_duplicates(subset = ['VAX_LOT'])\n",
" manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.set_index('VAX_LOT')\n",
" return manufacturerByBatchCodeTable.rename(columns = {\"VAX_MANU\": \"Company\"})"
] ]
}, },
{ {
@@ -655,47 +407,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"class BatchCodeTableFactory:\n", "from BatchCodeTableFactory import BatchCodeTableFactory"
"\n",
" def __init__(self, dataFrame: pd.DataFrame):\n",
" self.dataFrame = dataFrame\n",
" self.companyColumnAdder = CompanyColumnAdder(dataFrame)\n",
" self.countryBatchCodeTable = SummationTableFactory.createSummationTable(\n",
" dataFrame.groupby(\n",
" [\n",
" dataFrame['COUNTRY'],\n",
" dataFrame['VAX_LOT']\n",
" ]))\n",
"\n",
" def createGlobalBatchCodeTable(self):\n",
" return self._postProcess(SummationTableFactory.createSummationTable(self.dataFrame.groupby('VAX_LOT')))\n",
"\n",
" def createBatchCodeTableByCountry(self, country):\n",
" return self._postProcess(self._getBatchCodeTableByCountry(country))\n",
"\n",
" def _postProcess(self, batchCodeTable):\n",
" batchCodeTable = self.companyColumnAdder.addCompanyColumn(batchCodeTable)\n",
" batchCodeTable = batchCodeTable[\n",
" [\n",
" 'Adverse Reaction Reports',\n",
" 'Deaths',\n",
" 'Disabilities',\n",
" 'Life Threatening Illnesses',\n",
" 'Company',\n",
" 'Countries',\n",
" 'Severe reports',\n",
" 'Lethality'\n",
" ]]\n",
" return batchCodeTable.sort_values(by = 'Severe reports', ascending = False)\n",
"\n",
" def _getBatchCodeTableByCountry(self, country):\n",
" if country in self.countryBatchCodeTable.index:\n",
" return self.countryBatchCodeTable.loc[country]\n",
" else:\n",
" return self._getEmptyBatchCodeTable()\n",
"\n",
" def _getEmptyBatchCodeTable(self):\n",
" return self.countryBatchCodeTable[0:0].droplevel(0)\n"
] ]
}, },
{ {
@@ -705,21 +417,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from bs4 import BeautifulSoup\n", "from HtmlTransformerUtil import HtmlTransformerUtil"
"\n",
"class HtmlTransformerUtil:\n",
" \n",
" def applySoupTransformerToFile(self, file, soupTransformer):\n",
" self._writeSoup(soupTransformer(self._readSoup(file)), file)\n",
"\n",
" def _readSoup(self, file):\n",
" with open(file) as fp:\n",
" soup = BeautifulSoup(fp, 'lxml')\n",
" return soup\n",
"\n",
" def _writeSoup(self, soup, file):\n",
" with open(file, \"w\") as fp:\n",
" fp.write(str(soup)) \n"
] ]
}, },
{ {
@@ -729,27 +427,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from bs4 import BeautifulSoup\n", "from CountryOptionsSetter import CountryOptionsSetter"
"\n",
"\n",
"class CountryOptionsSetter:\n",
"\n",
" def setCountryOptions(self, html, options):\n",
" soup = self._setCountryOptions(self._parse(html), self._parseOptions(options))\n",
" return str(soup)\n",
"\n",
" def _setCountryOptions(self, soup, options):\n",
" countrySelect = soup.find(id = \"countrySelect\")\n",
" countrySelect.clear()\n",
" for option in options:\n",
" countrySelect.append(option)\n",
" return soup\n",
"\n",
" def _parseOptions(self, options):\n",
" return [self._parse(option).option for option in options]\n",
"\n",
" def _parse(self, html):\n",
" return BeautifulSoup(html, 'lxml')\n"
] ]
}, },
{ {
@@ -796,405 +474,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import os\n", "from IOUtils import IOUtils"
"\n",
"class IOUtils:\n",
"\n",
" @staticmethod\n",
" def saveDataFrame(dataFrame, file):\n",
" # IOUtils.saveDataFrameAsExcelFile(dataFrame, file)\n",
" # IOUtils.saveDataFrameAsHtml(dataFrame, file)\n",
" IOUtils.saveDataFrameAsJson(dataFrame, file)\n",
"\n",
" @staticmethod\n",
" def saveDataFrameAsExcelFile(dataFrame, file):\n",
" IOUtils.ensurePath(file)\n",
" dataFrame.to_excel(file + '.xlsx')\n",
"\n",
" @staticmethod\n",
" def saveDataFrameAsHtml(dataFrame, file):\n",
" IOUtils.ensurePath(file)\n",
" dataFrame.reset_index().to_html(\n",
" file + '.html',\n",
" index = False,\n",
" table_id = 'batchCodeTable',\n",
" classes = 'display',\n",
" justify = 'unset',\n",
" border = 0)\n",
"\n",
" @staticmethod\n",
" def saveDataFrameAsJson(dataFrame, file):\n",
" IOUtils.ensurePath(file)\n",
" dataFrame.reset_index().to_json(\n",
" file + '.json',\n",
" orient = \"split\",\n",
" index = False)\n",
"\n",
" @staticmethod\n",
" def ensurePath(file):\n",
" directory = os.path.dirname(file)\n",
" if not os.path.exists(directory):\n",
" os.makedirs(directory)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3dacedfd",
"metadata": {},
"outputs": [],
"source": [
"import unittest"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fcc855dd",
"metadata": {},
"outputs": [],
"source": [
"class TestHelper:\n",
"\n",
" @staticmethod\n",
" def createDataFrame(index, columns, data, dtypes = {}):\n",
" return pd.DataFrame(index = index, columns = columns, data = data).astype(dtypes)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ccb9838d",
"metadata": {},
"outputs": [],
"source": [
"from pandas.testing import assert_frame_equal\n",
"\n",
"class DataFrameNormalizerTest(unittest.TestCase):\n",
"\n",
" def test_convertVAX_LOTColumnToUpperCase(self):\n",
" # Given\n",
" dataFrame = TestHelper.createDataFrame(\n",
" columns = ['VAX_LOT'],\n",
" data = [ ['037K20A'],\n",
" ['025l20A'],\n",
" ['025L20A']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\",\n",
" \"1996874\"])\n",
" \n",
" # When\n",
" DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)\n",
" \n",
" # Then\n",
" dataFrameExpected = TestHelper.createDataFrame(\n",
" columns = ['VAX_LOT'],\n",
" data = [ ['037K20A'],\n",
" ['025L20A'],\n",
" ['025L20A']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\",\n",
" \"1996874\"])\n",
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n",
"\n",
" def test_removeUnknownBatchCodes(self):\n",
" # Given\n",
" dataFrame = TestHelper.createDataFrame(\n",
" columns = ['VAX_LOT'],\n",
" data = [ ['UNKNOWN'],\n",
" ['N/A Unknown'],\n",
" [np.nan],\n",
" ['UNKNOWN TO ME'],\n",
" ['030L20B']],\n",
" index = [\n",
" \"1048786\",\n",
" \"1048786\",\n",
" \"123\",\n",
" \"4711\",\n",
" \"0815\"])\n",
" \n",
" # When\n",
" DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)\n",
" \n",
" # Then\n",
" dataFrameExpected = TestHelper.createDataFrame(\n",
" columns = ['VAX_LOT'],\n",
" data = [ [np.nan],\n",
" ['030L20B']],\n",
" index = [\n",
" \"123\",\n",
" \"0815\"])\n",
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e59a1825",
"metadata": {},
"outputs": [],
"source": [
"from pandas.testing import assert_frame_equal\n",
"\n",
"class DataFrameFilterTest(unittest.TestCase):\n",
"\n",
" def test_filterByCovid19(self):\n",
" # Given\n",
" dataFrame = VaersDescr2DataFrameConverter.createDataFrameFromDescrs(\n",
" [\n",
" {\n",
" 'VAERSDATA': TestHelper.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ [1, 0, 0],\n",
" [0, 0, 1]],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"]),\n",
" 'VAERSVAX': TestHelper.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['COVID19', 'MODERNA', '037K20A', '1'],\n",
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" },\n",
" {\n",
" 'VAERSDATA': TestHelper.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
" data = [ [0, 0, 0],\n",
" [0, 0, 1]],\n",
" index = [\n",
" \"1996873\",\n",
" \"1996874\"]),\n",
" 'VAERSVAX': TestHelper.createDataFrame(\n",
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ ['HPV9', 'MERCK & CO. INC.', 'R017624', 'UNK'],\n",
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"1996873\",\n",
" \"1996874\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" }\n",
" ])\n",
" dataFrameFilter = DataFrameFilter()\n",
" \n",
" # When\n",
" dataFrame = dataFrameFilter.filterByCovid19(dataFrame)\n",
" \n",
" # Then\n",
" dataFrameExpected = TestHelper.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
" data = [ [1, 0, 0, 'COVID19', 'MODERNA', '037K20A', '1'],\n",
" [0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1'],\n",
" [0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1']],\n",
" index = [\n",
" \"0916600\",\n",
" \"0916601\",\n",
" \"1996874\"],\n",
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c784bfef",
"metadata": {},
"outputs": [],
"source": [
"from pandas.testing import assert_frame_equal\n",
"\n",
"class BatchCodeTableFactoryTest(unittest.TestCase):\n",
"\n",
" def test_createBatchCodeTableByCountry(self):\n",
" # Given\n",
" dataFrame = TestHelper.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],\n",
" data = [ [1, 0, 0, 'COVID19', 'PFIZER\\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],\n",
" [0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
" [1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
" [0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],\n",
" index = [\n",
" \"1048786\",\n",
" \"1048786\",\n",
" \"4711\",\n",
" \"0815\"])\n",
" dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)\n",
" batchCodeTableFactory = BatchCodeTableFactory(dataFrame)\n",
" \n",
" # When\n",
" batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('France')\n",
"\n",
" # Then\n",
" assert_frame_equal(\n",
" batchCodeTable,\n",
" TestHelper.createDataFrame(\n",
" columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],\n",
" data = [ [2, 1, 2, 2, 'MODERNA', 'France', 2/2 * 100, 1/2 * 100],\n",
" [1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],\n",
" index = pd.Index(\n",
" [\n",
" '030L20B',\n",
" '030L20A'\n",
" ],\n",
" name = 'VAX_LOT')),\n",
" check_dtype = False)\n",
"\n",
" def test_createGlobalBatchCodeTable(self):\n",
" # Given\n",
" dataFrame = TestHelper.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],\n",
" data = [ [1, 0, 0, 'COVID19', 'PFIZER\\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],\n",
" [0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
" [1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
" [0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'United Kingdom']],\n",
" index = [\n",
" \"1048786\",\n",
" \"1048786\",\n",
" \"4711\",\n",
" \"0815\"])\n",
" dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)\n",
" batchCodeTableFactory = BatchCodeTableFactory(dataFrame)\n",
" \n",
" # When\n",
" batchCodeTable = batchCodeTableFactory.createGlobalBatchCodeTable()\n",
"\n",
" # Then\n",
" assert_frame_equal(\n",
" batchCodeTable,\n",
" TestHelper.createDataFrame(\n",
" columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],\n",
" data = [ [1, 1, 0, 0, 'PFIZER\\BIONTECH', 'United Kingdom', 1/1 * 100, 1/1 * 100],\n",
" [2, 1, 2, 2, 'MODERNA', 'France, United Kingdom', 2/2 * 100, 1/2 * 100],\n",
" [1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],\n",
" index = pd.Index(\n",
" [\n",
" '016M20A',\n",
" '030L20B',\n",
" '030L20A'\n",
" ],\n",
" name = 'VAX_LOT')),\n",
" check_dtype = False)\n",
"\n",
" def test_createBatchCodeTableByNonExistingCountry(self):\n",
" # Given\n",
" dataFrame = TestHelper.createDataFrame(\n",
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],\n",
" data = [ [1, 0, 0, 'COVID19', 'PFIZER\\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],\n",
" [0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
" [1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
" [0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],\n",
" index = [\n",
" \"1048786\",\n",
" \"1048786\",\n",
" \"4711\",\n",
" \"0815\"])\n",
" dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)\n",
" batchCodeTableFactory = BatchCodeTableFactory(dataFrame)\n",
" \n",
" # When\n",
" batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('non existing country')\n",
"\n",
" # Then\n",
" assert_frame_equal(\n",
" batchCodeTable,\n",
" TestHelper.createDataFrame(\n",
" columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],\n",
" data = [ ],\n",
" index = pd.Index([], name = 'VAX_LOT')),\n",
" check_dtype = False)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "125351b3",
"metadata": {},
"outputs": [],
"source": [
"class CountryOptionsSetterTest(unittest.TestCase):\n",
"\n",
" def test_setCountryOptions(self):\n",
" # Given\n",
" countryOptionsSetter = CountryOptionsSetter()\n",
"\n",
" # When\n",
" htmlActual = countryOptionsSetter.setCountryOptions(\n",
" html='''\n",
" <html>\n",
" <body>\n",
" <p>Test<p/>\n",
" <select id=\"countrySelect\" name=\"country\">\n",
" <option value=\"Global\" selected>Global</option>\n",
" <option value=\"Afghanistan\">Afghanistan</option>\n",
" <option value=\"Albania\">Albania</option>\n",
" <option value=\"Algeria\">Algeria</option>\n",
" </select>\n",
" </body>\n",
" </html>\n",
" ''',\n",
" options=[\n",
" '<option value=\"Global\" selected>Global</option>',\n",
" '<option value=\"Azerbaijan\">Azerbaijan</option>',\n",
" '<option value=\"Bahrain\">Bahrain</option>'])\n",
"\n",
" # Then\n",
" assertEqualHTML(\n",
" htmlActual,\n",
" '''\n",
" <html>\n",
" <body>\n",
" <p>Test<p/>\n",
" <select id=\"countrySelect\" name=\"country\">\n",
" <option value=\"Global\" selected>Global</option>\n",
" <option value=\"Azerbaijan\">Azerbaijan</option>\n",
" <option value=\"Bahrain\">Bahrain</option>\n",
" </select>\n",
" </body>\n",
" </html>\n",
" ''')\n",
"\n",
"# adapted from https://stackoverflow.com/questions/8006909/pretty-print-assertequal-for-html-strings\n",
"def assertEqualHTML(string1, string2, file1='', file2=''):\n",
" u'''\n",
" Compare two unicode strings containing HTML.\n",
" A human friendly diff goes to logging.error() if they\n",
" are not equal, and an exception gets raised.\n",
" '''\n",
" from bs4 import BeautifulSoup as bs\n",
" import difflib\n",
"\n",
" def short(mystr):\n",
" max = 20\n",
" if len(mystr) > max:\n",
" return mystr[:max]\n",
" return mystr\n",
" p = []\n",
" for mystr, file in [(string1, file1), (string2, file2)]:\n",
" if not isinstance(mystr, str):\n",
" raise Exception(u'string ist not unicode: %r %s' %\n",
" (short(mystr), file))\n",
" soup = bs(mystr)\n",
" pretty = soup.prettify()\n",
" p.append(pretty)\n",
" if p[0] != p[1]:\n",
" for line in difflib.unified_diff(p[0].splitlines(), p[1].splitlines(), fromfile=file1, tofile=file2):\n",
" display(line)\n",
" display(p[0], ' != ', p[1])\n",
" raise Exception('Not equal %s %s' % (file1, file2))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a8bff1b",
"metadata": {},
"outputs": [],
"source": [
"unittest.main(argv = [''], verbosity = 2, exit = False)"
] ]
}, },
{ {

View File

@@ -0,0 +1,15 @@
from bs4 import BeautifulSoup
class HtmlTransformerUtil:
def applySoupTransformerToFile(self, file, soupTransformer):
self._writeSoup(soupTransformer(self._readSoup(file)), file)
def _readSoup(self, file):
with open(file) as fp:
soup = BeautifulSoup(fp, 'lxml')
return soup
def _writeSoup(self, soup, file):
with open(file, "w") as fp:
fp.write(str(soup))

39
src/IOUtils.py Normal file
View File

@@ -0,0 +1,39 @@
import os
class IOUtils:
@staticmethod
def saveDataFrame(dataFrame, file):
# IOUtils.saveDataFrameAsExcelFile(dataFrame, file)
# IOUtils.saveDataFrameAsHtml(dataFrame, file)
IOUtils.saveDataFrameAsJson(dataFrame, file)
@staticmethod
def saveDataFrameAsExcelFile(dataFrame, file):
IOUtils.ensurePath(file)
dataFrame.to_excel(file + '.xlsx')
@staticmethod
def saveDataFrameAsHtml(dataFrame, file):
IOUtils.ensurePath(file)
dataFrame.reset_index().to_html(
file + '.html',
index = False,
table_id = 'batchCodeTable',
classes = 'display',
justify = 'unset',
border = 0)
@staticmethod
def saveDataFrameAsJson(dataFrame, file):
IOUtils.ensurePath(file)
dataFrame.reset_index().to_json(
file + '.json',
orient = "split",
index = False)
@staticmethod
def ensurePath(file):
directory = os.path.dirname(file)
if not os.path.exists(directory):
os.makedirs(directory)

7
src/SevereColumnAdder.py Normal file
View File

@@ -0,0 +1,7 @@
class SevereColumnAdder:
@staticmethod
def addSevereColumn(dataFrame):
dataFrame['SEVERE'] = (dataFrame['DIED'] + dataFrame['L_THREAT'] + dataFrame['DISABLE']) > 0
dataFrame['SEVERE'].replace({True: 1, False: 0}, inplace = True)
return dataFrame

View File

@@ -0,0 +1,31 @@
import pandas as pd
class SummationTableFactory:
@staticmethod
def createSummationTable(dataFrame):
summationTable = dataFrame.agg(
**{
'Deaths': pd.NamedAgg(column = 'DIED', aggfunc = 'sum'),
'Adverse Reaction Reports': pd.NamedAgg(column = 'DIED', aggfunc = 'size'),
'Life Threatening Illnesses': pd.NamedAgg(column = 'L_THREAT', aggfunc = 'sum'),
'Disabilities': pd.NamedAgg(column = 'DISABLE', aggfunc = 'sum'),
'Severities': pd.NamedAgg(column = 'SEVERE', aggfunc = 'sum'),
'Countries': pd.NamedAgg(column = 'COUNTRY', aggfunc = SummationTableFactory.countries2str)
})
summationTable['Severe reports'] = summationTable['Severities'] / summationTable['Adverse Reaction Reports'] * 100
summationTable['Lethality'] = summationTable['Deaths'] / summationTable['Adverse Reaction Reports'] * 100
return summationTable[
[
'Adverse Reaction Reports',
'Deaths',
'Disabilities',
'Life Threatening Illnesses',
'Severe reports',
'Lethality',
'Countries'
]]
@staticmethod
def countries2str(countries):
return ', '.join(sorted(set(countries)))

8
src/TestHelper.py Normal file
View File

@@ -0,0 +1,8 @@
import pandas as pd
class TestHelper:
@staticmethod
def createDataFrame(index, columns, data, dtypes={}):
return pd.DataFrame(index=index, columns=columns, data=data).astype(dtypes)

View File

@@ -0,0 +1,18 @@
import pandas as pd
class VaersDescr2DataFrameConverter:
@staticmethod
def createDataFrameFromDescr(vaersDescr):
return pd.merge(
vaersDescr['VAERSDATA'],
vaersDescr['VAERSVAX'],
how = 'left',
left_index = True,
right_index = True,
validate = 'one_to_many')
@staticmethod
def createDataFrameFromDescrs(vaersDescrs):
dataFrames = [VaersDescr2DataFrameConverter.createDataFrameFromDescr(vaersDescr) for vaersDescr in vaersDescrs]
return pd.concat(dataFrames)

42
src/VaersDescrReader.py Normal file
View File

@@ -0,0 +1,42 @@
import pandas as pd
class VaersDescrReader:
def __init__(self, dataDir):
self.dataDir = dataDir
def readVaersDescrsForYears(self, years):
return [self.readVaersDescrForYear(year) for year in years]
def readVaersDescrForYear(self, year):
return {
'VAERSDATA': self._readVAERSDATA('{dataDir}/{year}VAERSDATA.csv'.format(dataDir = self.dataDir, year = year)),
'VAERSVAX': self._readVAERSVAX('{dataDir}/{year}VAERSVAX.csv'.format(dataDir = self.dataDir, year = year))
}
def readNonDomesticVaersDescr(self):
return {
'VAERSDATA': self._readVAERSDATA(self.dataDir + "/NonDomesticVAERSDATA.csv"),
'VAERSVAX': self._readVAERSVAX(self.dataDir + "/NonDomesticVAERSVAX.csv")
}
def _readVAERSDATA(self, file):
return self._read_csv(
file = file,
usecols = ['VAERS_ID', 'RECVDATE', 'DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT', 'SPLTTYPE'],
parse_dates = ['RECVDATE'],
date_parser = lambda dateStr: pd.to_datetime(dateStr, format = "%m/%d/%Y"))
def _readVAERSVAX(self, file):
return self._read_csv(
file = file,
usecols = ['VAERS_ID', 'VAX_DOSE_SERIES', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'],
dtype = {"VAX_DOSE_SERIES": "string"})
def _read_csv(self, file, **kwargs):
return pd.read_csv(
file,
index_col = 'VAERS_ID',
encoding = 'latin1',
low_memory = False,
**kwargs)