refactoring
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -13,3 +13,4 @@ docs/data/*.html
|
|||||||
src/captchaImage.jpeg
|
src/captchaImage.jpeg
|
||||||
src/HowBadIsMyBatch.nbconvert.ipynb
|
src/HowBadIsMyBatch.nbconvert.ipynb
|
||||||
src/HowBadIsMyBatch.nbconvert.html
|
src/HowBadIsMyBatch.nbconvert.html
|
||||||
|
src/__pycache__/
|
||||||
|
|||||||
11
.vscode/settings.json
vendored
Normal file
11
.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
{
|
||||||
|
"python.testing.unittestArgs": [
|
||||||
|
"-v",
|
||||||
|
"-s",
|
||||||
|
"./src",
|
||||||
|
"-p",
|
||||||
|
"*Test.py"
|
||||||
|
],
|
||||||
|
"python.testing.pytestEnabled": false,
|
||||||
|
"python.testing.unittestEnabled": true
|
||||||
|
}
|
||||||
45
src/BatchCodeTableFactory.py
Normal file
45
src/BatchCodeTableFactory.py
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from CompanyColumnAdder import CompanyColumnAdder
|
||||||
|
from SummationTableFactory import SummationTableFactory
|
||||||
|
|
||||||
|
class BatchCodeTableFactory:
|
||||||
|
|
||||||
|
def __init__(self, dataFrame: pd.DataFrame):
|
||||||
|
self.dataFrame = dataFrame
|
||||||
|
self.companyColumnAdder = CompanyColumnAdder(dataFrame)
|
||||||
|
self.countryBatchCodeTable = SummationTableFactory.createSummationTable(
|
||||||
|
dataFrame.groupby(
|
||||||
|
[
|
||||||
|
dataFrame['COUNTRY'],
|
||||||
|
dataFrame['VAX_LOT']
|
||||||
|
]))
|
||||||
|
|
||||||
|
def createGlobalBatchCodeTable(self):
|
||||||
|
return self._postProcess(SummationTableFactory.createSummationTable(self.dataFrame.groupby('VAX_LOT')))
|
||||||
|
|
||||||
|
def createBatchCodeTableByCountry(self, country):
|
||||||
|
return self._postProcess(self._getBatchCodeTableByCountry(country))
|
||||||
|
|
||||||
|
def _postProcess(self, batchCodeTable):
|
||||||
|
batchCodeTable = self.companyColumnAdder.addCompanyColumn(batchCodeTable)
|
||||||
|
batchCodeTable = batchCodeTable[
|
||||||
|
[
|
||||||
|
'Adverse Reaction Reports',
|
||||||
|
'Deaths',
|
||||||
|
'Disabilities',
|
||||||
|
'Life Threatening Illnesses',
|
||||||
|
'Company',
|
||||||
|
'Countries',
|
||||||
|
'Severe reports',
|
||||||
|
'Lethality'
|
||||||
|
]]
|
||||||
|
return batchCodeTable.sort_values(by = 'Severe reports', ascending = False)
|
||||||
|
|
||||||
|
def _getBatchCodeTableByCountry(self, country):
|
||||||
|
if country in self.countryBatchCodeTable.index:
|
||||||
|
return self.countryBatchCodeTable.loc[country]
|
||||||
|
else:
|
||||||
|
return self._getEmptyBatchCodeTable()
|
||||||
|
|
||||||
|
def _getEmptyBatchCodeTable(self):
|
||||||
|
return self.countryBatchCodeTable[0:0].droplevel(0)
|
||||||
106
src/BatchCodeTableFactoryTest.py
Normal file
106
src/BatchCodeTableFactoryTest.py
Normal file
@@ -0,0 +1,106 @@
|
|||||||
|
import unittest
|
||||||
|
import pandas as pd
|
||||||
|
from pandas.testing import assert_frame_equal
|
||||||
|
from TestHelper import TestHelper
|
||||||
|
from SevereColumnAdder import SevereColumnAdder
|
||||||
|
from BatchCodeTableFactory import BatchCodeTableFactory
|
||||||
|
|
||||||
|
class BatchCodeTableFactoryTest(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_createBatchCodeTableByCountry(self):
|
||||||
|
# Given
|
||||||
|
dataFrame = TestHelper.createDataFrame(
|
||||||
|
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],
|
||||||
|
data = [ [1, 0, 0, 'COVID19', 'PFIZER\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],
|
||||||
|
[0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
|
||||||
|
[1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
|
||||||
|
[0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],
|
||||||
|
index = [
|
||||||
|
"1048786",
|
||||||
|
"1048786",
|
||||||
|
"4711",
|
||||||
|
"0815"])
|
||||||
|
dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)
|
||||||
|
batchCodeTableFactory = BatchCodeTableFactory(dataFrame)
|
||||||
|
|
||||||
|
# When
|
||||||
|
batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('France')
|
||||||
|
|
||||||
|
# Then
|
||||||
|
assert_frame_equal(
|
||||||
|
batchCodeTable,
|
||||||
|
TestHelper.createDataFrame(
|
||||||
|
columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],
|
||||||
|
data = [ [2, 1, 2, 2, 'MODERNA', 'France', 2/2 * 100, 1/2 * 100],
|
||||||
|
[1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],
|
||||||
|
index = pd.Index(
|
||||||
|
[
|
||||||
|
'030L20B',
|
||||||
|
'030L20A'
|
||||||
|
],
|
||||||
|
name = 'VAX_LOT')),
|
||||||
|
check_dtype = False)
|
||||||
|
|
||||||
|
def test_createGlobalBatchCodeTable(self):
|
||||||
|
# Given
|
||||||
|
dataFrame = TestHelper.createDataFrame(
|
||||||
|
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],
|
||||||
|
data = [ [1, 0, 0, 'COVID19', 'PFIZER\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],
|
||||||
|
[0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
|
||||||
|
[1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
|
||||||
|
[0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'United Kingdom']],
|
||||||
|
index = [
|
||||||
|
"1048786",
|
||||||
|
"1048786",
|
||||||
|
"4711",
|
||||||
|
"0815"])
|
||||||
|
dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)
|
||||||
|
batchCodeTableFactory = BatchCodeTableFactory(dataFrame)
|
||||||
|
|
||||||
|
# When
|
||||||
|
batchCodeTable = batchCodeTableFactory.createGlobalBatchCodeTable()
|
||||||
|
|
||||||
|
# Then
|
||||||
|
assert_frame_equal(
|
||||||
|
batchCodeTable,
|
||||||
|
TestHelper.createDataFrame(
|
||||||
|
columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],
|
||||||
|
data = [ [1, 1, 0, 0, 'PFIZER\BIONTECH', 'United Kingdom', 1/1 * 100, 1/1 * 100],
|
||||||
|
[2, 1, 2, 2, 'MODERNA', 'France, United Kingdom', 2/2 * 100, 1/2 * 100],
|
||||||
|
[1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],
|
||||||
|
index = pd.Index(
|
||||||
|
[
|
||||||
|
'016M20A',
|
||||||
|
'030L20B',
|
||||||
|
'030L20A'
|
||||||
|
],
|
||||||
|
name = 'VAX_LOT')),
|
||||||
|
check_dtype = False)
|
||||||
|
|
||||||
|
def test_createBatchCodeTableByNonExistingCountry(self):
|
||||||
|
# Given
|
||||||
|
dataFrame = TestHelper.createDataFrame(
|
||||||
|
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],
|
||||||
|
data = [ [1, 0, 0, 'COVID19', 'PFIZER\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],
|
||||||
|
[0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
|
||||||
|
[1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],
|
||||||
|
[0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],
|
||||||
|
index = [
|
||||||
|
"1048786",
|
||||||
|
"1048786",
|
||||||
|
"4711",
|
||||||
|
"0815"])
|
||||||
|
dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)
|
||||||
|
batchCodeTableFactory = BatchCodeTableFactory(dataFrame)
|
||||||
|
|
||||||
|
# When
|
||||||
|
batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('non existing country')
|
||||||
|
|
||||||
|
# Then
|
||||||
|
assert_frame_equal(
|
||||||
|
batchCodeTable,
|
||||||
|
TestHelper.createDataFrame(
|
||||||
|
columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],
|
||||||
|
data = [ ],
|
||||||
|
index = pd.Index([], name = 'VAX_LOT')),
|
||||||
|
check_dtype = False)
|
||||||
21
src/CompanyColumnAdder.py
Normal file
21
src/CompanyColumnAdder.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class CompanyColumnAdder:
|
||||||
|
|
||||||
|
def __init__(self, dataFrame_VAX_LOT_VAX_MANU):
|
||||||
|
self.dataFrame_VAX_LOT_VAX_MANU = dataFrame_VAX_LOT_VAX_MANU
|
||||||
|
|
||||||
|
def addCompanyColumn(self, batchCodeTable):
|
||||||
|
return pd.merge(
|
||||||
|
batchCodeTable,
|
||||||
|
self._createCompanyByBatchCodeTable(),
|
||||||
|
how = 'left',
|
||||||
|
left_index = True,
|
||||||
|
right_index = True,
|
||||||
|
validate = 'one_to_one')
|
||||||
|
|
||||||
|
def _createCompanyByBatchCodeTable(self):
|
||||||
|
manufacturerByBatchCodeTable = self.dataFrame_VAX_LOT_VAX_MANU[['VAX_LOT', 'VAX_MANU']]
|
||||||
|
manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.drop_duplicates(subset = ['VAX_LOT'])
|
||||||
|
manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.set_index('VAX_LOT')
|
||||||
|
return manufacturerByBatchCodeTable.rename(columns = {"VAX_MANU": "Company"})
|
||||||
25
src/CountryColumnAdder.py
Normal file
25
src/CountryColumnAdder.py
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
import pycountry
|
||||||
|
|
||||||
|
class CountryColumnAdder:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def addCountryColumn(dataFrame):
|
||||||
|
dataFrame['COUNTRY'] = CountryColumnAdder.getCountryColumn(dataFrame)
|
||||||
|
return dataFrame.astype({'COUNTRY': "string"})
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def getCountryColumn(dataFrame):
|
||||||
|
return dataFrame.apply(
|
||||||
|
lambda row:
|
||||||
|
CountryColumnAdder._getCountryNameOfSplttypeOrDefault(
|
||||||
|
splttype = row['SPLTTYPE'],
|
||||||
|
default = 'Unknown Country'),
|
||||||
|
axis = 'columns')
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _getCountryNameOfSplttypeOrDefault(splttype, default):
|
||||||
|
if not isinstance(splttype, str):
|
||||||
|
return default
|
||||||
|
|
||||||
|
country = pycountry.countries.get(alpha_2 = splttype[:2])
|
||||||
|
return country.name if country is not None else default
|
||||||
21
src/CountryOptionsSetter.py
Normal file
21
src/CountryOptionsSetter.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
from bs4 import BeautifulSoup
|
||||||
|
|
||||||
|
|
||||||
|
class CountryOptionsSetter:
|
||||||
|
|
||||||
|
def setCountryOptions(self, html, options):
|
||||||
|
soup = self._setCountryOptions(self._parse(html), self._parseOptions(options))
|
||||||
|
return str(soup)
|
||||||
|
|
||||||
|
def _setCountryOptions(self, soup, options):
|
||||||
|
countrySelect = soup.find(id = "countrySelect")
|
||||||
|
countrySelect.clear()
|
||||||
|
for option in options:
|
||||||
|
countrySelect.append(option)
|
||||||
|
return soup
|
||||||
|
|
||||||
|
def _parseOptions(self, options):
|
||||||
|
return [self._parse(option).option for option in options]
|
||||||
|
|
||||||
|
def _parse(self, html):
|
||||||
|
return BeautifulSoup(html, 'lxml')
|
||||||
73
src/CountryOptionsSetterTest.py
Normal file
73
src/CountryOptionsSetterTest.py
Normal file
@@ -0,0 +1,73 @@
|
|||||||
|
import unittest
|
||||||
|
from CountryOptionsSetter import CountryOptionsSetter
|
||||||
|
|
||||||
|
class CountryOptionsSetterTest(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_setCountryOptions(self):
|
||||||
|
# Given
|
||||||
|
countryOptionsSetter = CountryOptionsSetter()
|
||||||
|
|
||||||
|
# When
|
||||||
|
htmlActual = countryOptionsSetter.setCountryOptions(
|
||||||
|
html='''
|
||||||
|
<html>
|
||||||
|
<body>
|
||||||
|
<p>Test<p/>
|
||||||
|
<select id="countrySelect" name="country">
|
||||||
|
<option value="Global" selected>Global</option>
|
||||||
|
<option value="Afghanistan">Afghanistan</option>
|
||||||
|
<option value="Albania">Albania</option>
|
||||||
|
<option value="Algeria">Algeria</option>
|
||||||
|
</select>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
''',
|
||||||
|
options=[
|
||||||
|
'<option value="Global" selected>Global</option>',
|
||||||
|
'<option value="Azerbaijan">Azerbaijan</option>',
|
||||||
|
'<option value="Bahrain">Bahrain</option>'])
|
||||||
|
|
||||||
|
# Then
|
||||||
|
assertEqualHTML(
|
||||||
|
htmlActual,
|
||||||
|
'''
|
||||||
|
<html>
|
||||||
|
<body>
|
||||||
|
<p>Test<p/>
|
||||||
|
<select id="countrySelect" name="country">
|
||||||
|
<option value="Global" selected>Global</option>
|
||||||
|
<option value="Azerbaijan">Azerbaijan</option>
|
||||||
|
<option value="Bahrain">Bahrain</option>
|
||||||
|
</select>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
''')
|
||||||
|
|
||||||
|
# adapted from https://stackoverflow.com/questions/8006909/pretty-print-assertequal-for-html-strings
|
||||||
|
def assertEqualHTML(string1, string2, file1='', file2=''):
|
||||||
|
u'''
|
||||||
|
Compare two unicode strings containing HTML.
|
||||||
|
A human friendly diff goes to logging.error() if they
|
||||||
|
are not equal, and an exception gets raised.
|
||||||
|
'''
|
||||||
|
from bs4 import BeautifulSoup as bs
|
||||||
|
import difflib
|
||||||
|
|
||||||
|
def short(mystr):
|
||||||
|
max = 20
|
||||||
|
if len(mystr) > max:
|
||||||
|
return mystr[:max]
|
||||||
|
return mystr
|
||||||
|
p = []
|
||||||
|
for mystr, file in [(string1, file1), (string2, file2)]:
|
||||||
|
if not isinstance(mystr, str):
|
||||||
|
raise Exception(u'string ist not unicode: %r %s' %
|
||||||
|
(short(mystr), file))
|
||||||
|
soup = bs(mystr, 'lxml')
|
||||||
|
pretty = soup.prettify()
|
||||||
|
p.append(pretty)
|
||||||
|
if p[0] != p[1]:
|
||||||
|
for line in difflib.unified_diff(p[0].splitlines(), p[1].splitlines(), fromfile=file1, tofile=file2):
|
||||||
|
display(line)
|
||||||
|
display(p[0], ' != ', p[1])
|
||||||
|
raise Exception('Not equal %s %s' % (file1, file2))
|
||||||
9
src/DataFrameFilter.py
Normal file
9
src/DataFrameFilter.py
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class DataFrameFilter:
|
||||||
|
|
||||||
|
def filterByCovid19(self, dataFrame):
|
||||||
|
return dataFrame[self._isCovid19(dataFrame)]
|
||||||
|
|
||||||
|
def _isCovid19(self, dataFrame):
|
||||||
|
return dataFrame["VAX_TYPE"] == "COVID19"
|
||||||
64
src/DataFrameFilterTest.py
Normal file
64
src/DataFrameFilterTest.py
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
import unittest
|
||||||
|
from pandas.testing import assert_frame_equal
|
||||||
|
from VaersDescr2DataFrameConverter import VaersDescr2DataFrameConverter
|
||||||
|
from TestHelper import TestHelper
|
||||||
|
from DataFrameFilter import DataFrameFilter
|
||||||
|
|
||||||
|
class DataFrameFilterTest(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_filterByCovid19(self):
|
||||||
|
# Given
|
||||||
|
dataFrame = VaersDescr2DataFrameConverter.createDataFrameFromDescrs(
|
||||||
|
[
|
||||||
|
{
|
||||||
|
'VAERSDATA': TestHelper.createDataFrame(
|
||||||
|
columns = ['DIED', 'L_THREAT', 'DISABLE'],
|
||||||
|
data = [ [1, 0, 0],
|
||||||
|
[0, 0, 1]],
|
||||||
|
index = [
|
||||||
|
"0916600",
|
||||||
|
"0916601"]),
|
||||||
|
'VAERSVAX': TestHelper.createDataFrame(
|
||||||
|
columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],
|
||||||
|
data = [ ['COVID19', 'MODERNA', '037K20A', '1'],
|
||||||
|
['COVID19', 'MODERNA', '025L20A', '1']],
|
||||||
|
index = [
|
||||||
|
"0916600",
|
||||||
|
"0916601"],
|
||||||
|
dtypes = {'VAX_DOSE_SERIES': "string"})
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'VAERSDATA': TestHelper.createDataFrame(
|
||||||
|
columns = ['DIED', 'L_THREAT', 'DISABLE'],
|
||||||
|
data = [ [0, 0, 0],
|
||||||
|
[0, 0, 1]],
|
||||||
|
index = [
|
||||||
|
"1996873",
|
||||||
|
"1996874"]),
|
||||||
|
'VAERSVAX': TestHelper.createDataFrame(
|
||||||
|
columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],
|
||||||
|
data = [ ['HPV9', 'MERCK & CO. INC.', 'R017624', 'UNK'],
|
||||||
|
['COVID19', 'MODERNA', '025L20A', '1']],
|
||||||
|
index = [
|
||||||
|
"1996873",
|
||||||
|
"1996874"],
|
||||||
|
dtypes = {'VAX_DOSE_SERIES': "string"})
|
||||||
|
}
|
||||||
|
])
|
||||||
|
dataFrameFilter = DataFrameFilter()
|
||||||
|
|
||||||
|
# When
|
||||||
|
dataFrame = dataFrameFilter.filterByCovid19(dataFrame)
|
||||||
|
|
||||||
|
# Then
|
||||||
|
dataFrameExpected = TestHelper.createDataFrame(
|
||||||
|
columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],
|
||||||
|
data = [ [1, 0, 0, 'COVID19', 'MODERNA', '037K20A', '1'],
|
||||||
|
[0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1'],
|
||||||
|
[0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1']],
|
||||||
|
index = [
|
||||||
|
"0916600",
|
||||||
|
"0916601",
|
||||||
|
"1996874"],
|
||||||
|
dtypes = {'VAX_DOSE_SERIES': "string"})
|
||||||
|
assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)
|
||||||
40
src/DataFrameNormalizer.py
Normal file
40
src/DataFrameNormalizer.py
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class DataFrameNormalizer:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def normalize(dataFrame):
|
||||||
|
DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)
|
||||||
|
DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)
|
||||||
|
DataFrameNormalizer._convertColumnsOfDataFrame_Y_to_1_else_0(
|
||||||
|
dataFrame,
|
||||||
|
['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT'])
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def convertVAX_LOTColumnToUpperCase(dataFrame):
|
||||||
|
dataFrame['VAX_LOT'] = dataFrame['VAX_LOT'].str.upper()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def removeUnknownBatchCodes(dataFrame):
|
||||||
|
dataFrame.drop(DataFrameNormalizer._isUnknownBatchCode(dataFrame).index, inplace = True)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _isUnknownBatchCode(dataFrame):
|
||||||
|
return dataFrame[dataFrame['VAX_LOT'].str.contains(pat = 'UNKNOWN', regex = False, case = False, na = False)]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _convertColumnsOfDataFrame_Y_to_1_else_0(dataFrame, columns):
|
||||||
|
for column in columns:
|
||||||
|
DataFrameNormalizer._convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column):
|
||||||
|
dataFrame[column] = DataFrameNormalizer._where(
|
||||||
|
condition = dataFrame[column] == 'Y',
|
||||||
|
trueValue = 1,
|
||||||
|
falseValue = 0)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _where(condition, trueValue, falseValue):
|
||||||
|
return np.where(condition, trueValue, falseValue)
|
||||||
|
|
||||||
63
src/DataFrameNormalizerTest.py
Normal file
63
src/DataFrameNormalizerTest.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
import unittest
|
||||||
|
from DataFrameNormalizer import DataFrameNormalizer
|
||||||
|
from TestHelper import TestHelper
|
||||||
|
from pandas.testing import assert_frame_equal
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class DataFrameNormalizerTest(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_convertVAX_LOTColumnToUpperCase(self):
|
||||||
|
# Given
|
||||||
|
dataFrame = TestHelper.createDataFrame(
|
||||||
|
columns = ['VAX_LOT'],
|
||||||
|
data = [ ['037K20A'],
|
||||||
|
['025l20A'],
|
||||||
|
['025L20A']],
|
||||||
|
index = [
|
||||||
|
"0916600",
|
||||||
|
"0916601",
|
||||||
|
"1996874"])
|
||||||
|
|
||||||
|
# When
|
||||||
|
DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)
|
||||||
|
|
||||||
|
# Then
|
||||||
|
dataFrameExpected = TestHelper.createDataFrame(
|
||||||
|
columns = ['VAX_LOT'],
|
||||||
|
data = [ ['037K20A'],
|
||||||
|
['025L20A'],
|
||||||
|
['025L20A']],
|
||||||
|
index = [
|
||||||
|
"0916600",
|
||||||
|
"0916601",
|
||||||
|
"1996874"])
|
||||||
|
assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)
|
||||||
|
|
||||||
|
def test_removeUnknownBatchCodes(self):
|
||||||
|
# Given
|
||||||
|
dataFrame = TestHelper.createDataFrame(
|
||||||
|
columns = ['VAX_LOT'],
|
||||||
|
data = [ ['UNKNOWN'],
|
||||||
|
['N/A Unknown'],
|
||||||
|
[np.nan],
|
||||||
|
['UNKNOWN TO ME'],
|
||||||
|
['030L20B']],
|
||||||
|
index = [
|
||||||
|
"1048786",
|
||||||
|
"1048786",
|
||||||
|
"123",
|
||||||
|
"4711",
|
||||||
|
"0815"])
|
||||||
|
|
||||||
|
# When
|
||||||
|
DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)
|
||||||
|
|
||||||
|
# Then
|
||||||
|
dataFrameExpected = TestHelper.createDataFrame(
|
||||||
|
columns = ['VAX_LOT'],
|
||||||
|
data = [ [np.nan],
|
||||||
|
['030L20B']],
|
||||||
|
index = [
|
||||||
|
"123",
|
||||||
|
"0815"])
|
||||||
|
assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)
|
||||||
42
src/DateProvider.py
Normal file
42
src/DateProvider.py
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
from bs4 import BeautifulSoup
|
||||||
|
import requests
|
||||||
|
import re
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
|
||||||
|
class DateProvider:
|
||||||
|
|
||||||
|
DATE_FORMAT = "%B %d, %Y"
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.lastUpdated = None
|
||||||
|
self.lastUpdatedDataSource = None
|
||||||
|
|
||||||
|
def needsUpdate(self):
|
||||||
|
return self.getLastUpdated() < self.getLastUpdatedDataSource()
|
||||||
|
|
||||||
|
def getLastUpdated(self):
|
||||||
|
if self.lastUpdated is None:
|
||||||
|
self.lastUpdated = self.__getLastUpdated(
|
||||||
|
url="https://knollfrank.github.io/HowBadIsMyBatch/batchCodeTable.html",
|
||||||
|
getDateStr=lambda soup: soup.find(id="last_updated").text)
|
||||||
|
|
||||||
|
return self.lastUpdated
|
||||||
|
|
||||||
|
def getLastUpdatedDataSource(self):
|
||||||
|
if self.lastUpdatedDataSource is None:
|
||||||
|
def getDateStr(soup):
|
||||||
|
lastUpdated = soup.find(string=re.compile("Last updated"))
|
||||||
|
return re.search('Last updated: (.+).', lastUpdated).group(1)
|
||||||
|
|
||||||
|
self.lastUpdatedDataSource = self.__getLastUpdated(
|
||||||
|
url="https://vaers.hhs.gov/data/datasets.html",
|
||||||
|
getDateStr=getDateStr)
|
||||||
|
|
||||||
|
return self.lastUpdatedDataSource
|
||||||
|
|
||||||
|
def __getLastUpdated(self, url, getDateStr):
|
||||||
|
htmlContent = requests.get(url).text
|
||||||
|
soup = BeautifulSoup(htmlContent, "lxml")
|
||||||
|
dateStr = getDateStr(soup)
|
||||||
|
return datetime.strptime(dateStr, DateProvider.DATE_FORMAT)
|
||||||
@@ -26,56 +26,6 @@
|
|||||||
"print(datetime.now().strftime(\"%d.%m.%Y, %H:%M:%S Uhr\"))"
|
"print(datetime.now().strftime(\"%d.%m.%Y, %H:%M:%S Uhr\"))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "1dbf9321",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from bs4 import BeautifulSoup\n",
|
|
||||||
"import requests\n",
|
|
||||||
"import re\n",
|
|
||||||
"from datetime import datetime\n",
|
|
||||||
"\n",
|
|
||||||
"class DateProvider:\n",
|
|
||||||
" \n",
|
|
||||||
" DATE_FORMAT = \"%B %d, %Y\"\n",
|
|
||||||
"\n",
|
|
||||||
" def __init__(self):\n",
|
|
||||||
" self.lastUpdated = None\n",
|
|
||||||
" self.lastUpdatedDataSource = None\n",
|
|
||||||
"\n",
|
|
||||||
" def needsUpdate(self):\n",
|
|
||||||
" return self.getLastUpdated() < self.getLastUpdatedDataSource()\n",
|
|
||||||
" \n",
|
|
||||||
" def getLastUpdated(self):\n",
|
|
||||||
" if self.lastUpdated is None:\n",
|
|
||||||
" self.lastUpdated = self.__getLastUpdated(\n",
|
|
||||||
" url = \"https://knollfrank.github.io/HowBadIsMyBatch/batchCodeTable.html\",\n",
|
|
||||||
" getDateStr = lambda soup: soup.find(id = \"last_updated\").text)\n",
|
|
||||||
" \n",
|
|
||||||
" return self.lastUpdated\n",
|
|
||||||
"\n",
|
|
||||||
" def getLastUpdatedDataSource(self):\n",
|
|
||||||
" if self.lastUpdatedDataSource is None:\n",
|
|
||||||
" def getDateStr(soup):\n",
|
|
||||||
" lastUpdated = soup.find(string = re.compile(\"Last updated\"))\n",
|
|
||||||
" return re.search('Last updated: (.+).', lastUpdated).group(1)\n",
|
|
||||||
"\n",
|
|
||||||
" self.lastUpdatedDataSource = self.__getLastUpdated(\n",
|
|
||||||
" url = \"https://vaers.hhs.gov/data/datasets.html\",\n",
|
|
||||||
" getDateStr = getDateStr)\n",
|
|
||||||
"\n",
|
|
||||||
" return self.lastUpdatedDataSource\n",
|
|
||||||
"\n",
|
|
||||||
" def __getLastUpdated(self, url, getDateStr):\n",
|
|
||||||
" htmlContent = requests.get(url).text\n",
|
|
||||||
" soup = BeautifulSoup(htmlContent, \"lxml\")\n",
|
|
||||||
" dateStr = getDateStr(soup)\n",
|
|
||||||
" return datetime.strptime(dateStr, DateProvider.DATE_FORMAT)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
@@ -83,6 +33,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"from DateProvider import DateProvider\n",
|
||||||
"dateProvider = DateProvider()\n",
|
"dateProvider = DateProvider()\n",
|
||||||
"print(' lastUpdated:', dateProvider.getLastUpdated())\n",
|
"print(' lastUpdated:', dateProvider.getLastUpdated())\n",
|
||||||
"print('lastUpdatedDataSource:', dateProvider.getLastUpdatedDataSource()) \n",
|
"print('lastUpdatedDataSource:', dateProvider.getLastUpdatedDataSource()) \n",
|
||||||
@@ -396,48 +347,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import pandas as pd\n",
|
"from VaersDescrReader import VaersDescrReader\n"
|
||||||
"\n",
|
|
||||||
"class VaersDescrReader:\n",
|
|
||||||
" \n",
|
|
||||||
" def __init__(self, dataDir):\n",
|
|
||||||
" self.dataDir = dataDir\n",
|
|
||||||
"\n",
|
|
||||||
" def readVaersDescrsForYears(self, years):\n",
|
|
||||||
" return [self.readVaersDescrForYear(year) for year in years]\n",
|
|
||||||
"\n",
|
|
||||||
" def readVaersDescrForYear(self, year):\n",
|
|
||||||
" return {\n",
|
|
||||||
" 'VAERSDATA': self._readVAERSDATA('{dataDir}/{year}VAERSDATA.csv'.format(dataDir = self.dataDir, year = year)),\n",
|
|
||||||
" 'VAERSVAX': self._readVAERSVAX('{dataDir}/{year}VAERSVAX.csv'.format(dataDir = self.dataDir, year = year))\n",
|
|
||||||
" }\n",
|
|
||||||
"\n",
|
|
||||||
" def readNonDomesticVaersDescr(self):\n",
|
|
||||||
" return {\n",
|
|
||||||
" 'VAERSDATA': self._readVAERSDATA(self.dataDir + \"/NonDomesticVAERSDATA.csv\"),\n",
|
|
||||||
" 'VAERSVAX': self._readVAERSVAX(self.dataDir + \"/NonDomesticVAERSVAX.csv\")\n",
|
|
||||||
" }\n",
|
|
||||||
"\n",
|
|
||||||
" def _readVAERSDATA(self, file):\n",
|
|
||||||
" return self._read_csv(\n",
|
|
||||||
" file = file,\n",
|
|
||||||
" usecols = ['VAERS_ID', 'RECVDATE', 'DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT', 'SPLTTYPE'],\n",
|
|
||||||
" parse_dates = ['RECVDATE'],\n",
|
|
||||||
" date_parser = lambda dateStr: pd.to_datetime(dateStr, format = \"%m/%d/%Y\"))\n",
|
|
||||||
"\n",
|
|
||||||
" def _readVAERSVAX(self, file):\n",
|
|
||||||
" return self._read_csv(\n",
|
|
||||||
" file = file,\n",
|
|
||||||
" usecols = ['VAERS_ID', 'VAX_DOSE_SERIES', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'],\n",
|
|
||||||
" dtype = {\"VAX_DOSE_SERIES\": \"string\"})\n",
|
|
||||||
"\n",
|
|
||||||
" def _read_csv(self, file, **kwargs):\n",
|
|
||||||
" return pd.read_csv(\n",
|
|
||||||
" file,\n",
|
|
||||||
" index_col = 'VAERS_ID',\n",
|
|
||||||
" encoding = 'latin1',\n",
|
|
||||||
" low_memory = False,\n",
|
|
||||||
" **kwargs)\n"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -447,24 +357,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import pandas as pd\n",
|
"from VaersDescr2DataFrameConverter import VaersDescr2DataFrameConverter"
|
||||||
"\n",
|
|
||||||
"class VaersDescr2DataFrameConverter:\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def createDataFrameFromDescr(vaersDescr):\n",
|
|
||||||
" return pd.merge(\n",
|
|
||||||
" vaersDescr['VAERSDATA'],\n",
|
|
||||||
" vaersDescr['VAERSVAX'],\n",
|
|
||||||
" how = 'left',\n",
|
|
||||||
" left_index = True,\n",
|
|
||||||
" right_index = True,\n",
|
|
||||||
" validate = 'one_to_many')\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def createDataFrameFromDescrs(vaersDescrs):\n",
|
|
||||||
" dataFrames = [VaersDescr2DataFrameConverter.createDataFrameFromDescr(vaersDescr) for vaersDescr in vaersDescrs]\n",
|
|
||||||
" return pd.concat(dataFrames)\n"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -474,44 +367,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"class DataFrameNormalizer:\n",
|
"from DataFrameNormalizer import DataFrameNormalizer"
|
||||||
" \n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def normalize(dataFrame):\n",
|
|
||||||
" DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)\n",
|
|
||||||
" DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)\n",
|
|
||||||
" DataFrameNormalizer._convertColumnsOfDataFrame_Y_to_1_else_0(\n",
|
|
||||||
" dataFrame,\n",
|
|
||||||
" ['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT'])\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def convertVAX_LOTColumnToUpperCase(dataFrame):\n",
|
|
||||||
" dataFrame['VAX_LOT'] = dataFrame['VAX_LOT'].str.upper()\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def removeUnknownBatchCodes(dataFrame):\n",
|
|
||||||
" dataFrame.drop(DataFrameNormalizer._isUnknownBatchCode(dataFrame).index, inplace = True)\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def _isUnknownBatchCode(dataFrame):\n",
|
|
||||||
" return dataFrame[dataFrame['VAX_LOT'].str.contains(pat = 'UNKNOWN', regex = False, case = False, na = False)]\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def _convertColumnsOfDataFrame_Y_to_1_else_0(dataFrame, columns):\n",
|
|
||||||
" for column in columns:\n",
|
|
||||||
" DataFrameNormalizer._convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column)\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def _convertColumnOfDataFrame_Y_to_1_else_0(dataFrame, column):\n",
|
|
||||||
" dataFrame[column] = DataFrameNormalizer._where(\n",
|
|
||||||
" condition = dataFrame[column] == 'Y',\n",
|
|
||||||
" trueValue = 1,\n",
|
|
||||||
" falseValue = 0)\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def _where(condition, trueValue, falseValue):\n",
|
|
||||||
" return np.where(condition, trueValue, falseValue) \n",
|
|
||||||
" "
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -521,53 +377,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import pandas as pd\n",
|
"from DataFrameFilter import DataFrameFilter"
|
||||||
"\n",
|
|
||||||
"class DataFrameFilter:\n",
|
|
||||||
" \n",
|
|
||||||
" def filterByCovid19(self, dataFrame):\n",
|
|
||||||
" return dataFrame[self._isCovid19(dataFrame)]\n",
|
|
||||||
"\n",
|
|
||||||
" def _isCovid19(self, dataFrame):\n",
|
|
||||||
" return dataFrame[\"VAX_TYPE\"] == \"COVID19\"\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "c62cfaff",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"class SummationTableFactory:\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def createSummationTable(dataFrame):\n",
|
|
||||||
" summationTable = dataFrame.agg(\n",
|
|
||||||
" **{\n",
|
|
||||||
" 'Deaths': pd.NamedAgg(column = 'DIED', aggfunc = 'sum'),\n",
|
|
||||||
" 'Adverse Reaction Reports': pd.NamedAgg(column = 'DIED', aggfunc = 'size'),\n",
|
|
||||||
" 'Life Threatening Illnesses': pd.NamedAgg(column = 'L_THREAT', aggfunc = 'sum'), \n",
|
|
||||||
" 'Disabilities': pd.NamedAgg(column = 'DISABLE', aggfunc = 'sum'),\n",
|
|
||||||
" 'Severities': pd.NamedAgg(column = 'SEVERE', aggfunc = 'sum'),\n",
|
|
||||||
" 'Countries': pd.NamedAgg(column = 'COUNTRY', aggfunc = SummationTableFactory.countries2str)\n",
|
|
||||||
" })\n",
|
|
||||||
" summationTable['Severe reports'] = summationTable['Severities'] / summationTable['Adverse Reaction Reports'] * 100\n",
|
|
||||||
" summationTable['Lethality'] = summationTable['Deaths'] / summationTable['Adverse Reaction Reports'] * 100\n",
|
|
||||||
" return summationTable[\n",
|
|
||||||
" [\n",
|
|
||||||
" 'Adverse Reaction Reports',\n",
|
|
||||||
" 'Deaths',\n",
|
|
||||||
" 'Disabilities',\n",
|
|
||||||
" 'Life Threatening Illnesses',\n",
|
|
||||||
" 'Severe reports',\n",
|
|
||||||
" 'Lethality',\n",
|
|
||||||
" 'Countries'\n",
|
|
||||||
" ]]\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def countries2str(countries):\n",
|
|
||||||
" return ', '.join(sorted(set(countries)))"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -577,31 +387,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import pycountry\n",
|
"from CountryColumnAdder import CountryColumnAdder"
|
||||||
"\n",
|
|
||||||
"class CountryColumnAdder:\n",
|
|
||||||
" \n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def addCountryColumn(dataFrame):\n",
|
|
||||||
" dataFrame['COUNTRY'] = CountryColumnAdder.getCountryColumn(dataFrame)\n",
|
|
||||||
" return dataFrame.astype({'COUNTRY': \"string\"})\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def getCountryColumn(dataFrame):\n",
|
|
||||||
" return dataFrame.apply(\n",
|
|
||||||
" lambda row:\n",
|
|
||||||
" CountryColumnAdder._getCountryNameOfSplttypeOrDefault(\n",
|
|
||||||
" splttype = row['SPLTTYPE'],\n",
|
|
||||||
" default = 'Unknown Country'),\n",
|
|
||||||
" axis = 'columns')\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def _getCountryNameOfSplttypeOrDefault(splttype, default):\n",
|
|
||||||
" if not isinstance(splttype, str):\n",
|
|
||||||
" return default\n",
|
|
||||||
" \n",
|
|
||||||
" country = pycountry.countries.get(alpha_2 = splttype[:2])\n",
|
|
||||||
" return country.name if country is not None else default"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -611,41 +397,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"class SevereColumnAdder:\n",
|
"from SevereColumnAdder import SevereColumnAdder"
|
||||||
" \n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def addSevereColumn(dataFrame):\n",
|
|
||||||
" dataFrame['SEVERE'] = (dataFrame['DIED'] + dataFrame['L_THREAT'] + dataFrame['DISABLE']) > 0\n",
|
|
||||||
" dataFrame['SEVERE'].replace({True: 1, False: 0}, inplace = True)\n",
|
|
||||||
" return dataFrame\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "2dad09e5",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"class CompanyColumnAdder:\n",
|
|
||||||
" \n",
|
|
||||||
" def __init__(self, dataFrame_VAX_LOT_VAX_MANU):\n",
|
|
||||||
" self.dataFrame_VAX_LOT_VAX_MANU = dataFrame_VAX_LOT_VAX_MANU\n",
|
|
||||||
"\n",
|
|
||||||
" def addCompanyColumn(self, batchCodeTable):\n",
|
|
||||||
" return pd.merge(\n",
|
|
||||||
" batchCodeTable,\n",
|
|
||||||
" self._createCompanyByBatchCodeTable(),\n",
|
|
||||||
" how = 'left',\n",
|
|
||||||
" left_index = True,\n",
|
|
||||||
" right_index = True,\n",
|
|
||||||
" validate = 'one_to_one')\n",
|
|
||||||
"\n",
|
|
||||||
" def _createCompanyByBatchCodeTable(self):\n",
|
|
||||||
" manufacturerByBatchCodeTable = self.dataFrame_VAX_LOT_VAX_MANU[['VAX_LOT', 'VAX_MANU']]\n",
|
|
||||||
" manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.drop_duplicates(subset = ['VAX_LOT'])\n",
|
|
||||||
" manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.set_index('VAX_LOT')\n",
|
|
||||||
" return manufacturerByBatchCodeTable.rename(columns = {\"VAX_MANU\": \"Company\"})"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -655,47 +407,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"class BatchCodeTableFactory:\n",
|
"from BatchCodeTableFactory import BatchCodeTableFactory"
|
||||||
"\n",
|
|
||||||
" def __init__(self, dataFrame: pd.DataFrame):\n",
|
|
||||||
" self.dataFrame = dataFrame\n",
|
|
||||||
" self.companyColumnAdder = CompanyColumnAdder(dataFrame)\n",
|
|
||||||
" self.countryBatchCodeTable = SummationTableFactory.createSummationTable(\n",
|
|
||||||
" dataFrame.groupby(\n",
|
|
||||||
" [\n",
|
|
||||||
" dataFrame['COUNTRY'],\n",
|
|
||||||
" dataFrame['VAX_LOT']\n",
|
|
||||||
" ]))\n",
|
|
||||||
"\n",
|
|
||||||
" def createGlobalBatchCodeTable(self):\n",
|
|
||||||
" return self._postProcess(SummationTableFactory.createSummationTable(self.dataFrame.groupby('VAX_LOT')))\n",
|
|
||||||
"\n",
|
|
||||||
" def createBatchCodeTableByCountry(self, country):\n",
|
|
||||||
" return self._postProcess(self._getBatchCodeTableByCountry(country))\n",
|
|
||||||
"\n",
|
|
||||||
" def _postProcess(self, batchCodeTable):\n",
|
|
||||||
" batchCodeTable = self.companyColumnAdder.addCompanyColumn(batchCodeTable)\n",
|
|
||||||
" batchCodeTable = batchCodeTable[\n",
|
|
||||||
" [\n",
|
|
||||||
" 'Adverse Reaction Reports',\n",
|
|
||||||
" 'Deaths',\n",
|
|
||||||
" 'Disabilities',\n",
|
|
||||||
" 'Life Threatening Illnesses',\n",
|
|
||||||
" 'Company',\n",
|
|
||||||
" 'Countries',\n",
|
|
||||||
" 'Severe reports',\n",
|
|
||||||
" 'Lethality'\n",
|
|
||||||
" ]]\n",
|
|
||||||
" return batchCodeTable.sort_values(by = 'Severe reports', ascending = False)\n",
|
|
||||||
"\n",
|
|
||||||
" def _getBatchCodeTableByCountry(self, country):\n",
|
|
||||||
" if country in self.countryBatchCodeTable.index:\n",
|
|
||||||
" return self.countryBatchCodeTable.loc[country]\n",
|
|
||||||
" else:\n",
|
|
||||||
" return self._getEmptyBatchCodeTable()\n",
|
|
||||||
"\n",
|
|
||||||
" def _getEmptyBatchCodeTable(self):\n",
|
|
||||||
" return self.countryBatchCodeTable[0:0].droplevel(0)\n"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -705,21 +417,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from bs4 import BeautifulSoup\n",
|
"from HtmlTransformerUtil import HtmlTransformerUtil"
|
||||||
"\n",
|
|
||||||
"class HtmlTransformerUtil:\n",
|
|
||||||
" \n",
|
|
||||||
" def applySoupTransformerToFile(self, file, soupTransformer):\n",
|
|
||||||
" self._writeSoup(soupTransformer(self._readSoup(file)), file)\n",
|
|
||||||
"\n",
|
|
||||||
" def _readSoup(self, file):\n",
|
|
||||||
" with open(file) as fp:\n",
|
|
||||||
" soup = BeautifulSoup(fp, 'lxml')\n",
|
|
||||||
" return soup\n",
|
|
||||||
"\n",
|
|
||||||
" def _writeSoup(self, soup, file):\n",
|
|
||||||
" with open(file, \"w\") as fp:\n",
|
|
||||||
" fp.write(str(soup)) \n"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -729,27 +427,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from bs4 import BeautifulSoup\n",
|
"from CountryOptionsSetter import CountryOptionsSetter"
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"class CountryOptionsSetter:\n",
|
|
||||||
"\n",
|
|
||||||
" def setCountryOptions(self, html, options):\n",
|
|
||||||
" soup = self._setCountryOptions(self._parse(html), self._parseOptions(options))\n",
|
|
||||||
" return str(soup)\n",
|
|
||||||
"\n",
|
|
||||||
" def _setCountryOptions(self, soup, options):\n",
|
|
||||||
" countrySelect = soup.find(id = \"countrySelect\")\n",
|
|
||||||
" countrySelect.clear()\n",
|
|
||||||
" for option in options:\n",
|
|
||||||
" countrySelect.append(option)\n",
|
|
||||||
" return soup\n",
|
|
||||||
"\n",
|
|
||||||
" def _parseOptions(self, options):\n",
|
|
||||||
" return [self._parse(option).option for option in options]\n",
|
|
||||||
"\n",
|
|
||||||
" def _parse(self, html):\n",
|
|
||||||
" return BeautifulSoup(html, 'lxml')\n"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -796,405 +474,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import os\n",
|
"from IOUtils import IOUtils"
|
||||||
"\n",
|
|
||||||
"class IOUtils:\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def saveDataFrame(dataFrame, file):\n",
|
|
||||||
" # IOUtils.saveDataFrameAsExcelFile(dataFrame, file)\n",
|
|
||||||
" # IOUtils.saveDataFrameAsHtml(dataFrame, file)\n",
|
|
||||||
" IOUtils.saveDataFrameAsJson(dataFrame, file)\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def saveDataFrameAsExcelFile(dataFrame, file):\n",
|
|
||||||
" IOUtils.ensurePath(file)\n",
|
|
||||||
" dataFrame.to_excel(file + '.xlsx')\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def saveDataFrameAsHtml(dataFrame, file):\n",
|
|
||||||
" IOUtils.ensurePath(file)\n",
|
|
||||||
" dataFrame.reset_index().to_html(\n",
|
|
||||||
" file + '.html',\n",
|
|
||||||
" index = False,\n",
|
|
||||||
" table_id = 'batchCodeTable',\n",
|
|
||||||
" classes = 'display',\n",
|
|
||||||
" justify = 'unset',\n",
|
|
||||||
" border = 0)\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def saveDataFrameAsJson(dataFrame, file):\n",
|
|
||||||
" IOUtils.ensurePath(file)\n",
|
|
||||||
" dataFrame.reset_index().to_json(\n",
|
|
||||||
" file + '.json',\n",
|
|
||||||
" orient = \"split\",\n",
|
|
||||||
" index = False)\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def ensurePath(file):\n",
|
|
||||||
" directory = os.path.dirname(file)\n",
|
|
||||||
" if not os.path.exists(directory):\n",
|
|
||||||
" os.makedirs(directory)\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "3dacedfd",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import unittest"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "fcc855dd",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"class TestHelper:\n",
|
|
||||||
"\n",
|
|
||||||
" @staticmethod\n",
|
|
||||||
" def createDataFrame(index, columns, data, dtypes = {}):\n",
|
|
||||||
" return pd.DataFrame(index = index, columns = columns, data = data).astype(dtypes)\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "ccb9838d",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from pandas.testing import assert_frame_equal\n",
|
|
||||||
"\n",
|
|
||||||
"class DataFrameNormalizerTest(unittest.TestCase):\n",
|
|
||||||
"\n",
|
|
||||||
" def test_convertVAX_LOTColumnToUpperCase(self):\n",
|
|
||||||
" # Given\n",
|
|
||||||
" dataFrame = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['VAX_LOT'],\n",
|
|
||||||
" data = [ ['037K20A'],\n",
|
|
||||||
" ['025l20A'],\n",
|
|
||||||
" ['025L20A']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"0916600\",\n",
|
|
||||||
" \"0916601\",\n",
|
|
||||||
" \"1996874\"])\n",
|
|
||||||
" \n",
|
|
||||||
" # When\n",
|
|
||||||
" DataFrameNormalizer.convertVAX_LOTColumnToUpperCase(dataFrame)\n",
|
|
||||||
" \n",
|
|
||||||
" # Then\n",
|
|
||||||
" dataFrameExpected = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['VAX_LOT'],\n",
|
|
||||||
" data = [ ['037K20A'],\n",
|
|
||||||
" ['025L20A'],\n",
|
|
||||||
" ['025L20A']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"0916600\",\n",
|
|
||||||
" \"0916601\",\n",
|
|
||||||
" \"1996874\"])\n",
|
|
||||||
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n",
|
|
||||||
"\n",
|
|
||||||
" def test_removeUnknownBatchCodes(self):\n",
|
|
||||||
" # Given\n",
|
|
||||||
" dataFrame = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['VAX_LOT'],\n",
|
|
||||||
" data = [ ['UNKNOWN'],\n",
|
|
||||||
" ['N/A Unknown'],\n",
|
|
||||||
" [np.nan],\n",
|
|
||||||
" ['UNKNOWN TO ME'],\n",
|
|
||||||
" ['030L20B']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"123\",\n",
|
|
||||||
" \"4711\",\n",
|
|
||||||
" \"0815\"])\n",
|
|
||||||
" \n",
|
|
||||||
" # When\n",
|
|
||||||
" DataFrameNormalizer.removeUnknownBatchCodes(dataFrame)\n",
|
|
||||||
" \n",
|
|
||||||
" # Then\n",
|
|
||||||
" dataFrameExpected = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['VAX_LOT'],\n",
|
|
||||||
" data = [ [np.nan],\n",
|
|
||||||
" ['030L20B']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"123\",\n",
|
|
||||||
" \"0815\"])\n",
|
|
||||||
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "e59a1825",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from pandas.testing import assert_frame_equal\n",
|
|
||||||
"\n",
|
|
||||||
"class DataFrameFilterTest(unittest.TestCase):\n",
|
|
||||||
"\n",
|
|
||||||
" def test_filterByCovid19(self):\n",
|
|
||||||
" # Given\n",
|
|
||||||
" dataFrame = VaersDescr2DataFrameConverter.createDataFrameFromDescrs(\n",
|
|
||||||
" [\n",
|
|
||||||
" {\n",
|
|
||||||
" 'VAERSDATA': TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
|
|
||||||
" data = [ [1, 0, 0],\n",
|
|
||||||
" [0, 0, 1]],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"0916600\",\n",
|
|
||||||
" \"0916601\"]),\n",
|
|
||||||
" 'VAERSVAX': TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
|
|
||||||
" data = [ ['COVID19', 'MODERNA', '037K20A', '1'],\n",
|
|
||||||
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"0916600\",\n",
|
|
||||||
" \"0916601\"],\n",
|
|
||||||
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
|
|
||||||
" },\n",
|
|
||||||
" {\n",
|
|
||||||
" 'VAERSDATA': TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['DIED', 'L_THREAT', 'DISABLE'],\n",
|
|
||||||
" data = [ [0, 0, 0],\n",
|
|
||||||
" [0, 0, 1]],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"1996873\",\n",
|
|
||||||
" \"1996874\"]),\n",
|
|
||||||
" 'VAERSVAX': TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
|
|
||||||
" data = [ ['HPV9', 'MERCK & CO. INC.', 'R017624', 'UNK'],\n",
|
|
||||||
" ['COVID19', 'MODERNA', '025L20A', '1']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"1996873\",\n",
|
|
||||||
" \"1996874\"],\n",
|
|
||||||
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
|
|
||||||
" }\n",
|
|
||||||
" ])\n",
|
|
||||||
" dataFrameFilter = DataFrameFilter()\n",
|
|
||||||
" \n",
|
|
||||||
" # When\n",
|
|
||||||
" dataFrame = dataFrameFilter.filterByCovid19(dataFrame)\n",
|
|
||||||
" \n",
|
|
||||||
" # Then\n",
|
|
||||||
" dataFrameExpected = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES'],\n",
|
|
||||||
" data = [ [1, 0, 0, 'COVID19', 'MODERNA', '037K20A', '1'],\n",
|
|
||||||
" [0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1'],\n",
|
|
||||||
" [0, 0, 1, 'COVID19', 'MODERNA', '025L20A', '1']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"0916600\",\n",
|
|
||||||
" \"0916601\",\n",
|
|
||||||
" \"1996874\"],\n",
|
|
||||||
" dtypes = {'VAX_DOSE_SERIES': \"string\"})\n",
|
|
||||||
" assert_frame_equal(dataFrame, dataFrameExpected, check_dtype = False)\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "c784bfef",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from pandas.testing import assert_frame_equal\n",
|
|
||||||
"\n",
|
|
||||||
"class BatchCodeTableFactoryTest(unittest.TestCase):\n",
|
|
||||||
"\n",
|
|
||||||
" def test_createBatchCodeTableByCountry(self):\n",
|
|
||||||
" # Given\n",
|
|
||||||
" dataFrame = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],\n",
|
|
||||||
" data = [ [1, 0, 0, 'COVID19', 'PFIZER\\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],\n",
|
|
||||||
" [0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
|
|
||||||
" [1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
|
|
||||||
" [0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"4711\",\n",
|
|
||||||
" \"0815\"])\n",
|
|
||||||
" dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)\n",
|
|
||||||
" batchCodeTableFactory = BatchCodeTableFactory(dataFrame)\n",
|
|
||||||
" \n",
|
|
||||||
" # When\n",
|
|
||||||
" batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('France')\n",
|
|
||||||
"\n",
|
|
||||||
" # Then\n",
|
|
||||||
" assert_frame_equal(\n",
|
|
||||||
" batchCodeTable,\n",
|
|
||||||
" TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],\n",
|
|
||||||
" data = [ [2, 1, 2, 2, 'MODERNA', 'France', 2/2 * 100, 1/2 * 100],\n",
|
|
||||||
" [1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],\n",
|
|
||||||
" index = pd.Index(\n",
|
|
||||||
" [\n",
|
|
||||||
" '030L20B',\n",
|
|
||||||
" '030L20A'\n",
|
|
||||||
" ],\n",
|
|
||||||
" name = 'VAX_LOT')),\n",
|
|
||||||
" check_dtype = False)\n",
|
|
||||||
"\n",
|
|
||||||
" def test_createGlobalBatchCodeTable(self):\n",
|
|
||||||
" # Given\n",
|
|
||||||
" dataFrame = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],\n",
|
|
||||||
" data = [ [1, 0, 0, 'COVID19', 'PFIZER\\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],\n",
|
|
||||||
" [0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
|
|
||||||
" [1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
|
|
||||||
" [0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'United Kingdom']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"4711\",\n",
|
|
||||||
" \"0815\"])\n",
|
|
||||||
" dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)\n",
|
|
||||||
" batchCodeTableFactory = BatchCodeTableFactory(dataFrame)\n",
|
|
||||||
" \n",
|
|
||||||
" # When\n",
|
|
||||||
" batchCodeTable = batchCodeTableFactory.createGlobalBatchCodeTable()\n",
|
|
||||||
"\n",
|
|
||||||
" # Then\n",
|
|
||||||
" assert_frame_equal(\n",
|
|
||||||
" batchCodeTable,\n",
|
|
||||||
" TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],\n",
|
|
||||||
" data = [ [1, 1, 0, 0, 'PFIZER\\BIONTECH', 'United Kingdom', 1/1 * 100, 1/1 * 100],\n",
|
|
||||||
" [2, 1, 2, 2, 'MODERNA', 'France, United Kingdom', 2/2 * 100, 1/2 * 100],\n",
|
|
||||||
" [1, 0, 0, 0, 'MODERNA', 'France', 0/1 * 100, 0/1 * 100]],\n",
|
|
||||||
" index = pd.Index(\n",
|
|
||||||
" [\n",
|
|
||||||
" '016M20A',\n",
|
|
||||||
" '030L20B',\n",
|
|
||||||
" '030L20A'\n",
|
|
||||||
" ],\n",
|
|
||||||
" name = 'VAX_LOT')),\n",
|
|
||||||
" check_dtype = False)\n",
|
|
||||||
"\n",
|
|
||||||
" def test_createBatchCodeTableByNonExistingCountry(self):\n",
|
|
||||||
" # Given\n",
|
|
||||||
" dataFrame = TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['DIED', 'L_THREAT', 'DISABLE', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT', 'VAX_DOSE_SERIES', 'SPLTTYPE', 'HOSPITAL', 'ER_VISIT', 'COUNTRY'],\n",
|
|
||||||
" data = [ [1, 0, 0, 'COVID19', 'PFIZER\\BIONTECH', '016M20A', '2', 'GBPFIZER INC2020486806', 0, 0, 'United Kingdom'],\n",
|
|
||||||
" [0, 0, 0, 'COVID19', 'MODERNA', '030L20A', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
|
|
||||||
" [1, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France'],\n",
|
|
||||||
" [0, 1, 1, 'COVID19', 'MODERNA', '030L20B', '1', 'FRMODERNATX, INC.MOD20224', 0, 0, 'France']],\n",
|
|
||||||
" index = [\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"1048786\",\n",
|
|
||||||
" \"4711\",\n",
|
|
||||||
" \"0815\"])\n",
|
|
||||||
" dataFrame = SevereColumnAdder.addSevereColumn(dataFrame)\n",
|
|
||||||
" batchCodeTableFactory = BatchCodeTableFactory(dataFrame)\n",
|
|
||||||
" \n",
|
|
||||||
" # When\n",
|
|
||||||
" batchCodeTable = batchCodeTableFactory.createBatchCodeTableByCountry('non existing country')\n",
|
|
||||||
"\n",
|
|
||||||
" # Then\n",
|
|
||||||
" assert_frame_equal(\n",
|
|
||||||
" batchCodeTable,\n",
|
|
||||||
" TestHelper.createDataFrame(\n",
|
|
||||||
" columns = ['Adverse Reaction Reports', 'Deaths', 'Disabilities', 'Life Threatening Illnesses', 'Company', 'Countries', 'Severe reports', 'Lethality'],\n",
|
|
||||||
" data = [ ],\n",
|
|
||||||
" index = pd.Index([], name = 'VAX_LOT')),\n",
|
|
||||||
" check_dtype = False)\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "125351b3",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"class CountryOptionsSetterTest(unittest.TestCase):\n",
|
|
||||||
"\n",
|
|
||||||
" def test_setCountryOptions(self):\n",
|
|
||||||
" # Given\n",
|
|
||||||
" countryOptionsSetter = CountryOptionsSetter()\n",
|
|
||||||
"\n",
|
|
||||||
" # When\n",
|
|
||||||
" htmlActual = countryOptionsSetter.setCountryOptions(\n",
|
|
||||||
" html='''\n",
|
|
||||||
" <html>\n",
|
|
||||||
" <body>\n",
|
|
||||||
" <p>Test<p/>\n",
|
|
||||||
" <select id=\"countrySelect\" name=\"country\">\n",
|
|
||||||
" <option value=\"Global\" selected>Global</option>\n",
|
|
||||||
" <option value=\"Afghanistan\">Afghanistan</option>\n",
|
|
||||||
" <option value=\"Albania\">Albania</option>\n",
|
|
||||||
" <option value=\"Algeria\">Algeria</option>\n",
|
|
||||||
" </select>\n",
|
|
||||||
" </body>\n",
|
|
||||||
" </html>\n",
|
|
||||||
" ''',\n",
|
|
||||||
" options=[\n",
|
|
||||||
" '<option value=\"Global\" selected>Global</option>',\n",
|
|
||||||
" '<option value=\"Azerbaijan\">Azerbaijan</option>',\n",
|
|
||||||
" '<option value=\"Bahrain\">Bahrain</option>'])\n",
|
|
||||||
"\n",
|
|
||||||
" # Then\n",
|
|
||||||
" assertEqualHTML(\n",
|
|
||||||
" htmlActual,\n",
|
|
||||||
" '''\n",
|
|
||||||
" <html>\n",
|
|
||||||
" <body>\n",
|
|
||||||
" <p>Test<p/>\n",
|
|
||||||
" <select id=\"countrySelect\" name=\"country\">\n",
|
|
||||||
" <option value=\"Global\" selected>Global</option>\n",
|
|
||||||
" <option value=\"Azerbaijan\">Azerbaijan</option>\n",
|
|
||||||
" <option value=\"Bahrain\">Bahrain</option>\n",
|
|
||||||
" </select>\n",
|
|
||||||
" </body>\n",
|
|
||||||
" </html>\n",
|
|
||||||
" ''')\n",
|
|
||||||
"\n",
|
|
||||||
"# adapted from https://stackoverflow.com/questions/8006909/pretty-print-assertequal-for-html-strings\n",
|
|
||||||
"def assertEqualHTML(string1, string2, file1='', file2=''):\n",
|
|
||||||
" u'''\n",
|
|
||||||
" Compare two unicode strings containing HTML.\n",
|
|
||||||
" A human friendly diff goes to logging.error() if they\n",
|
|
||||||
" are not equal, and an exception gets raised.\n",
|
|
||||||
" '''\n",
|
|
||||||
" from bs4 import BeautifulSoup as bs\n",
|
|
||||||
" import difflib\n",
|
|
||||||
"\n",
|
|
||||||
" def short(mystr):\n",
|
|
||||||
" max = 20\n",
|
|
||||||
" if len(mystr) > max:\n",
|
|
||||||
" return mystr[:max]\n",
|
|
||||||
" return mystr\n",
|
|
||||||
" p = []\n",
|
|
||||||
" for mystr, file in [(string1, file1), (string2, file2)]:\n",
|
|
||||||
" if not isinstance(mystr, str):\n",
|
|
||||||
" raise Exception(u'string ist not unicode: %r %s' %\n",
|
|
||||||
" (short(mystr), file))\n",
|
|
||||||
" soup = bs(mystr)\n",
|
|
||||||
" pretty = soup.prettify()\n",
|
|
||||||
" p.append(pretty)\n",
|
|
||||||
" if p[0] != p[1]:\n",
|
|
||||||
" for line in difflib.unified_diff(p[0].splitlines(), p[1].splitlines(), fromfile=file1, tofile=file2):\n",
|
|
||||||
" display(line)\n",
|
|
||||||
" display(p[0], ' != ', p[1])\n",
|
|
||||||
" raise Exception('Not equal %s %s' % (file1, file2))\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "5a8bff1b",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"unittest.main(argv = [''], verbosity = 2, exit = False)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
15
src/HtmlTransformerUtil.py
Normal file
15
src/HtmlTransformerUtil.py
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
from bs4 import BeautifulSoup
|
||||||
|
|
||||||
|
class HtmlTransformerUtil:
|
||||||
|
|
||||||
|
def applySoupTransformerToFile(self, file, soupTransformer):
|
||||||
|
self._writeSoup(soupTransformer(self._readSoup(file)), file)
|
||||||
|
|
||||||
|
def _readSoup(self, file):
|
||||||
|
with open(file) as fp:
|
||||||
|
soup = BeautifulSoup(fp, 'lxml')
|
||||||
|
return soup
|
||||||
|
|
||||||
|
def _writeSoup(self, soup, file):
|
||||||
|
with open(file, "w") as fp:
|
||||||
|
fp.write(str(soup))
|
||||||
39
src/IOUtils.py
Normal file
39
src/IOUtils.py
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
class IOUtils:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def saveDataFrame(dataFrame, file):
|
||||||
|
# IOUtils.saveDataFrameAsExcelFile(dataFrame, file)
|
||||||
|
# IOUtils.saveDataFrameAsHtml(dataFrame, file)
|
||||||
|
IOUtils.saveDataFrameAsJson(dataFrame, file)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def saveDataFrameAsExcelFile(dataFrame, file):
|
||||||
|
IOUtils.ensurePath(file)
|
||||||
|
dataFrame.to_excel(file + '.xlsx')
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def saveDataFrameAsHtml(dataFrame, file):
|
||||||
|
IOUtils.ensurePath(file)
|
||||||
|
dataFrame.reset_index().to_html(
|
||||||
|
file + '.html',
|
||||||
|
index = False,
|
||||||
|
table_id = 'batchCodeTable',
|
||||||
|
classes = 'display',
|
||||||
|
justify = 'unset',
|
||||||
|
border = 0)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def saveDataFrameAsJson(dataFrame, file):
|
||||||
|
IOUtils.ensurePath(file)
|
||||||
|
dataFrame.reset_index().to_json(
|
||||||
|
file + '.json',
|
||||||
|
orient = "split",
|
||||||
|
index = False)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def ensurePath(file):
|
||||||
|
directory = os.path.dirname(file)
|
||||||
|
if not os.path.exists(directory):
|
||||||
|
os.makedirs(directory)
|
||||||
7
src/SevereColumnAdder.py
Normal file
7
src/SevereColumnAdder.py
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
class SevereColumnAdder:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def addSevereColumn(dataFrame):
|
||||||
|
dataFrame['SEVERE'] = (dataFrame['DIED'] + dataFrame['L_THREAT'] + dataFrame['DISABLE']) > 0
|
||||||
|
dataFrame['SEVERE'].replace({True: 1, False: 0}, inplace = True)
|
||||||
|
return dataFrame
|
||||||
31
src/SummationTableFactory.py
Normal file
31
src/SummationTableFactory.py
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class SummationTableFactory:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def createSummationTable(dataFrame):
|
||||||
|
summationTable = dataFrame.agg(
|
||||||
|
**{
|
||||||
|
'Deaths': pd.NamedAgg(column = 'DIED', aggfunc = 'sum'),
|
||||||
|
'Adverse Reaction Reports': pd.NamedAgg(column = 'DIED', aggfunc = 'size'),
|
||||||
|
'Life Threatening Illnesses': pd.NamedAgg(column = 'L_THREAT', aggfunc = 'sum'),
|
||||||
|
'Disabilities': pd.NamedAgg(column = 'DISABLE', aggfunc = 'sum'),
|
||||||
|
'Severities': pd.NamedAgg(column = 'SEVERE', aggfunc = 'sum'),
|
||||||
|
'Countries': pd.NamedAgg(column = 'COUNTRY', aggfunc = SummationTableFactory.countries2str)
|
||||||
|
})
|
||||||
|
summationTable['Severe reports'] = summationTable['Severities'] / summationTable['Adverse Reaction Reports'] * 100
|
||||||
|
summationTable['Lethality'] = summationTable['Deaths'] / summationTable['Adverse Reaction Reports'] * 100
|
||||||
|
return summationTable[
|
||||||
|
[
|
||||||
|
'Adverse Reaction Reports',
|
||||||
|
'Deaths',
|
||||||
|
'Disabilities',
|
||||||
|
'Life Threatening Illnesses',
|
||||||
|
'Severe reports',
|
||||||
|
'Lethality',
|
||||||
|
'Countries'
|
||||||
|
]]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def countries2str(countries):
|
||||||
|
return ', '.join(sorted(set(countries)))
|
||||||
8
src/TestHelper.py
Normal file
8
src/TestHelper.py
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
class TestHelper:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def createDataFrame(index, columns, data, dtypes={}):
|
||||||
|
return pd.DataFrame(index=index, columns=columns, data=data).astype(dtypes)
|
||||||
18
src/VaersDescr2DataFrameConverter.py
Normal file
18
src/VaersDescr2DataFrameConverter.py
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class VaersDescr2DataFrameConverter:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def createDataFrameFromDescr(vaersDescr):
|
||||||
|
return pd.merge(
|
||||||
|
vaersDescr['VAERSDATA'],
|
||||||
|
vaersDescr['VAERSVAX'],
|
||||||
|
how = 'left',
|
||||||
|
left_index = True,
|
||||||
|
right_index = True,
|
||||||
|
validate = 'one_to_many')
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def createDataFrameFromDescrs(vaersDescrs):
|
||||||
|
dataFrames = [VaersDescr2DataFrameConverter.createDataFrameFromDescr(vaersDescr) for vaersDescr in vaersDescrs]
|
||||||
|
return pd.concat(dataFrames)
|
||||||
42
src/VaersDescrReader.py
Normal file
42
src/VaersDescrReader.py
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class VaersDescrReader:
|
||||||
|
|
||||||
|
def __init__(self, dataDir):
|
||||||
|
self.dataDir = dataDir
|
||||||
|
|
||||||
|
def readVaersDescrsForYears(self, years):
|
||||||
|
return [self.readVaersDescrForYear(year) for year in years]
|
||||||
|
|
||||||
|
def readVaersDescrForYear(self, year):
|
||||||
|
return {
|
||||||
|
'VAERSDATA': self._readVAERSDATA('{dataDir}/{year}VAERSDATA.csv'.format(dataDir = self.dataDir, year = year)),
|
||||||
|
'VAERSVAX': self._readVAERSVAX('{dataDir}/{year}VAERSVAX.csv'.format(dataDir = self.dataDir, year = year))
|
||||||
|
}
|
||||||
|
|
||||||
|
def readNonDomesticVaersDescr(self):
|
||||||
|
return {
|
||||||
|
'VAERSDATA': self._readVAERSDATA(self.dataDir + "/NonDomesticVAERSDATA.csv"),
|
||||||
|
'VAERSVAX': self._readVAERSVAX(self.dataDir + "/NonDomesticVAERSVAX.csv")
|
||||||
|
}
|
||||||
|
|
||||||
|
def _readVAERSDATA(self, file):
|
||||||
|
return self._read_csv(
|
||||||
|
file = file,
|
||||||
|
usecols = ['VAERS_ID', 'RECVDATE', 'DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT', 'SPLTTYPE'],
|
||||||
|
parse_dates = ['RECVDATE'],
|
||||||
|
date_parser = lambda dateStr: pd.to_datetime(dateStr, format = "%m/%d/%Y"))
|
||||||
|
|
||||||
|
def _readVAERSVAX(self, file):
|
||||||
|
return self._read_csv(
|
||||||
|
file = file,
|
||||||
|
usecols = ['VAERS_ID', 'VAX_DOSE_SERIES', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'],
|
||||||
|
dtype = {"VAX_DOSE_SERIES": "string"})
|
||||||
|
|
||||||
|
def _read_csv(self, file, **kwargs):
|
||||||
|
return pd.read_csv(
|
||||||
|
file,
|
||||||
|
index_col = 'VAERS_ID',
|
||||||
|
encoding = 'latin1',
|
||||||
|
low_memory = False,
|
||||||
|
**kwargs)
|
||||||
Reference in New Issue
Block a user