refactoring

This commit is contained in:
frankknoll
2022-11-22 13:22:00 +01:00
parent 80e94c92d4
commit d94869181b
5 changed files with 164 additions and 194 deletions

73
src/CaptchaReader.py Normal file
View File

@@ -0,0 +1,73 @@
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from PIL import Image
import numpy as np
import io
# copied from value of characters variable in captcha_ocr.ipynb or captcha_ocr_trainAndSaveModel.ipynb
characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'a', 'b', 'c', 'd', 'e', 'f']
img_width = 241
img_height = 62
downsample_factor = 4
# copied from value of max_length variable in captcha_ocr.ipynb or captcha_ocr_trainAndSaveModel.ipynb
max_length = 6
char_to_num = layers.StringLookup(
vocabulary=list(characters),
mask_token=None)
num_to_char = layers.StringLookup(
vocabulary=char_to_num.get_vocabulary(),
mask_token=None, invert=True)
def encode_single_sample(img_path):
# 1. Read image
img = tf.io.read_file(img_path)
# 2. Decode and convert to grayscale
img = tf.io.decode_png(img, channels=1)
# 3. Convert to float32 in [0, 1] range
img = tf.image.convert_image_dtype(img, tf.float32)
# 4. Resize to the desired size
img = tf.image.resize(img, [img_height, img_width])
# 5. Transpose the image because we want the time
# dimension to correspond to the width of the image.
img = tf.transpose(img, perm=[1, 0, 2])
# 7. Return a dict as our model is expecting two inputs
return asSingleSampleBatch(img)
def asSingleSampleBatch(img):
array = keras.utils.img_to_array(img)
array = np.expand_dims(array, axis=0)
return array
def decode_batch_predictions(pred):
input_len = np.ones(pred.shape[0]) * pred.shape[1]
# Use greedy search. For complex tasks, you can use beam search
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][:, :max_length]
# Iterate over the results and get back the text
output_text = []
for res in results:
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
output_text.append(res)
return output_text
def load_model():
_model = keras.models.load_model('model')
model = keras.models.Model(
_model.get_layer(name="image").input,
_model.get_layer(name="dense2").output)
return model
def getTextInCaptchaImage(captchaImageFile):
batchImages = encode_single_sample(captchaImageFile)
preds = model.predict(batchImages)
return decode_batch_predictions(preds)[0]
print("loading model...")
model = load_model()
model.summary()