using only ascending lines for fitting
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import numpy as np
|
||||
from SymptomsCausedByVaccines.MultiLineFitting.LinesFactory import LinesFactory
|
||||
from SymptomsCausedByVaccines.MultiLineFitting.Utils import getPairs
|
||||
from SymptomsCausedByVaccines.MultiLineFitting.Utils import generatePairs
|
||||
from SymptomsCausedByVaccines.MultiLineFitting.CharacteristicFunctions import CharacteristicFunctions
|
||||
|
||||
# implementation of "Robust Multiple Structures Estimation with J-linkage" adapted from https://github.com/fkluger/vp-linkage
|
||||
@@ -10,6 +10,10 @@ class MultiLineFitter:
|
||||
def fitPointsByLines(points, consensusThreshold):
|
||||
return MultiLineFitter.fitLines(points, LinesFactory.createLines(points), consensusThreshold)
|
||||
|
||||
@staticmethod
|
||||
def fitPointsByAscendingLines(points, consensusThreshold):
|
||||
return MultiLineFitter.fitLines(points, LinesFactory.createAscendingLines(points), consensusThreshold)
|
||||
|
||||
@staticmethod
|
||||
def fitLines(points, lines, consensusThreshold):
|
||||
preferenceMatrix = MultiLineFitter._createPreferenceMatrix(points, lines, consensusThreshold)
|
||||
@@ -48,7 +52,7 @@ class MultiLineFitter:
|
||||
bestClusterIndexCombination = None
|
||||
keepClustering = False
|
||||
numClusters = preferenceMatrix.shape[0]
|
||||
for (clusterIndexA, clusterIndexB) in getPairs(numClusters):
|
||||
for (clusterIndexA, clusterIndexB) in generatePairs(numClusters):
|
||||
preferenceSetA = preferenceMatrix[clusterIndexA]
|
||||
preferenceSetB = preferenceMatrix[clusterIndexB]
|
||||
similarity = MultiLineFitter._intersectionOverUnion(preferenceSetA, preferenceSetB);
|
||||
|
||||
Reference in New Issue
Block a user