From c4f1ac726c95e7e70a165e58ccf69223624f895d Mon Sep 17 00:00:00 2001 From: frankknoll Date: Sat, 5 Feb 2022 19:32:27 +0100 Subject: [PATCH] refactoring --- HowBadIsMyBatch.ipynb | 27 +++++++++------------------ 1 file changed, 9 insertions(+), 18 deletions(-) diff --git a/HowBadIsMyBatch.ipynb b/HowBadIsMyBatch.ipynb index c21ba2622c6..11be552551d 100644 --- a/HowBadIsMyBatch.ipynb +++ b/HowBadIsMyBatch.ipynb @@ -261,21 +261,20 @@ " \n", " @staticmethod\n", " def getDoseTable(dataFrame):\n", - " doseTable = DoseAnalysis._getDoseTable(dataFrame.groupby('VAX_DOSE_SERIES'))\n", - " doseTable.index.set_names('Dose', inplace = True)\n", - " return doseTable\n", + " return DoseAnalysis._getDoseTable(\n", + " dataFrame.groupby(\n", + " dataFrame['VAX_DOSE_SERIES'].rename('Dose')))\n", "\n", " @staticmethod\n", " def getDoseByMonthTable(dataFrame):\n", " # https://stackoverflow.com/questions/61879166/pandas-groupby-month-and-year-date-as-datetime64ns-and-summarized-by-count\n", - " doseByMonthTable = DoseAnalysis._getDoseTable(\n", + " return DoseAnalysis._getDoseTable(\n", " dataFrame.groupby(\n", - " [\n", - " dataFrame['RECVDATE'].dt.year.rename('Year'),\n", - " dataFrame['RECVDATE'].dt.month.rename('Month'),\n", - " dataFrame['VAX_DOSE_SERIES'].rename('Dose')\n", - " ]))\n", - " return doseByMonthTable\n", + " [\n", + " dataFrame['RECVDATE'].dt.year.rename('Year'),\n", + " dataFrame['RECVDATE'].dt.month.rename('Month'),\n", + " dataFrame['VAX_DOSE_SERIES'].rename('Dose')\n", + " ]))\n", "\n", " @staticmethod\n", " def _getDoseTable(dataFrame):\n", @@ -791,14 +790,6 @@ "doseByMonthTable.to_excel('results/doseByMonthTable.xlsx')\n", "doseByMonthTable" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8f915532", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": {