diff --git a/HowBadIsMyBatch.ipynb b/HowBadIsMyBatch.ipynb index be4c4906778..282dabdbb41 100644 --- a/HowBadIsMyBatch.ipynb +++ b/HowBadIsMyBatch.ipynb @@ -128,11 +128,7 @@ " \n", " def __init__(self, dataFrame : pd.DataFrame):\n", " self.dataFrame = dataFrame \n", - " self._convertColumnOfDataFrameToNumeric('DIED')\n", - " self._convertColumnOfDataFrameToNumeric('L_THREAT')\n", - " self._convertColumnOfDataFrameToNumeric('DISABLE')\n", - " self._convertColumnOfDataFrameToNumeric('HOSPITAL')\n", - " self._convertColumnOfDataFrameToNumeric('ER_VISIT')\n", + " self._convertColumnsOfDataFrameToNumerics(['DIED', 'L_THREAT', 'DISABLE', 'HOSPITAL', 'ER_VISIT'])\n", "\n", " def createBatchCodeTable(self):\n", " batchCodeTable = self.dataFrame.groupby('VAX_LOT').agg(\n", @@ -193,6 +189,10 @@ " manufacturerByBatchCodeTable = manufacturerByBatchCodeTable.drop_duplicates(subset = ['VAX_LOT'])\n", " return manufacturerByBatchCodeTable.set_index('VAX_LOT')\n", "\n", + " def _convertColumnsOfDataFrameToNumerics(self, columns):\n", + " for column in columns:\n", + " self._convertColumnOfDataFrameToNumeric(column)\n", + "\n", " def _convertColumnOfDataFrameToNumeric(self, column):\n", " self.dataFrame[column] = np.where(self.dataFrame[column] == 'Y', 1, 0)\n", "\n", diff --git a/help.txt b/help.txt index ddd5621d662..114f27e31ef 100644 --- a/help.txt +++ b/help.txt @@ -1,5 +1,8 @@ jupyter notebook +get VAERS data: +- download data (e.g. 2022VAERSData.zip) from https://vaers.hhs.gov/data/datasets.html and save and unzip in VAERS folder + FK-TODO: - https://www.howbadismybatch.com/firstsecond.html nachprogrammieren - VAX_LOT-Spalte normalisieren, d.h. mindestens toUpperCase() darauf anwenden