diff --git a/HowBadIsMyBatch.ipynb b/HowBadIsMyBatch.ipynb index 4a32c89c7e9..da10cf0a10f 100644 --- a/HowBadIsMyBatch.ipynb +++ b/HowBadIsMyBatch.ipynb @@ -91,53 +91,65 @@ "source": [ "from pandas.testing import assert_frame_equal\n", "\n", + "\n", "class BatchCodeTableTest(unittest.TestCase):\n", "\n", " def test_createBatchCodeTable2(self):\n", - " vaersData2021 = pd.DataFrame(columns = ['DIED', 'L_THREAT', 'DISABLE'], index = ['0916600', '0916601'])\n", - " vaersData2021.loc['0916600'] = pd.Series({'DIED': 'Y', 'L_THREAT': np.NaN, 'DISABLE': np.NaN})\n", - " vaersData2021.loc['0916601'] = pd.Series({'DIED': np.NaN, 'L_THREAT': np.NaN, 'DISABLE': 'Y'})\n", - "\n", - " vaersVax2021 = pd.DataFrame(columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT'], index = ['0916600', '0916601'])\n", - " vaersVax2021.loc['0916600'] = pd.Series({'VAX_TYPE': 'COVID19', 'VAX_MANU': 'MODERNA', 'VAX_LOT': '037K20A'})\n", - " vaersVax2021.loc['0916601'] = pd.Series({'VAX_TYPE': 'COVID19', 'VAX_MANU': 'MODERNA', 'VAX_LOT': '025L20A'})\n", - "\n", - " vaersData2022 = pd.DataFrame(columns = ['DIED', 'L_THREAT', 'DISABLE'], index = ['1996873', '1996874'])\n", - " vaersData2022.loc['1996873'] = pd.Series({'DIED': np.NaN, 'L_THREAT': np.NaN, 'DISABLE': np.NaN})\n", - " vaersData2022.loc['1996874'] = pd.Series({'DIED': np.NaN, 'L_THREAT': np.NaN, 'DISABLE': 'Y'})\n", - "\n", - " vaersVax2022 = pd.DataFrame(columns = ['VAX_TYPE', 'VAX_MANU', 'VAX_LOT'], index = ['1996873', '1996874'])\n", - " vaersVax2022.loc['1996873'] = pd.Series({'VAX_TYPE': 'HPV9', 'VAX_MANU': 'MERCK & CO. INC.', 'VAX_LOT': 'R017624'})\n", - " vaersVax2022.loc['1996874'] = pd.Series({'VAX_TYPE': 'COVID19', 'VAX_MANU': 'MODERNA', 'VAX_LOT': '025L20A'})\n", - " \n", " dataFrame = _createDataFrame(\n", " [\n", - " {'VAERSDATA': vaersData2021, 'VAERSVAX': vaersVax2021},\n", - " {'VAERSDATA': vaersData2022, 'VAERSVAX': vaersVax2022}\n", + " {\n", + " 'VAERSDATA': self.createDataFrame(\n", + " [ 'DIED', 'L_THREAT', 'DISABLE'],\n", + " {\n", + " '0916600': ['Y', np.NaN, np.NaN],\n", + " '0916601': [np.NaN, np.NaN, 'Y']\n", + " }),\n", + " 'VAERSVAX': self.createDataFrame(\n", + " [ 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'],\n", + " {\n", + " '0916600': ['COVID19', 'MODERNA', '037K20A'],\n", + " '0916601': ['COVID19', 'MODERNA', '025L20A']\n", + " })\n", + " },\n", + " {\n", + " 'VAERSDATA': self.createDataFrame(\n", + " [ 'DIED', 'L_THREAT', 'DISABLE'],\n", + " {\n", + " '1996873': [np.NaN, np.NaN, np.NaN],\n", + " '1996874': [np.NaN, np.NaN, 'Y']\n", + " }),\n", + " 'VAERSVAX': self.createDataFrame(\n", + " [ 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'],\n", + " {\n", + " '1996873': ['HPV9', 'MERCK & CO. INC.', 'R017624'],\n", + " '1996874': ['COVID19', 'MODERNA', '025L20A']\n", + " })\n", + " }\n", " ],\n", " \"MODERNA\")\n", "\n", " self._test_createBatchCodeTable(dataFrame);\n", - " \n", + "\n", " def test_createBatchCodeTable(self):\n", " self._test_createBatchCodeTable(createDataFrame(\"test/VAERS\", \"MODERNA\"));\n", "\n", " def _test_createBatchCodeTable(self, dataFrame):\n", " # When\n", - " batchCodeTable = createBatchCodeTable(dataFrame)\n", + " batchCodeTable=createBatchCodeTable(dataFrame)\n", "\n", " # Then\n", - " batchCodeTableExpected = pd.DataFrame(\n", - " data = {\n", + " batchCodeTableExpected=pd.DataFrame(\n", + " data={\n", " 'ADRs': [2, 1],\n", " 'DEATHS': [0, 1],\n", " 'DISABILITIES': [2, 0],\n", " 'LIFE THREATENING ILLNESSES': [0, 0]\n", " },\n", - " index = pd.MultiIndex.from_arrays([['025L20A', '037K20A']], names = ('VAX_LOT',)))\n", - " assert_frame_equal(batchCodeTable, batchCodeTableExpected, check_dtype = False)\n", + " index=pd.MultiIndex.from_arrays([['025L20A', '037K20A']], names = ('VAX_LOT',)))\n", + " assert_frame_equal(batchCodeTable, batchCodeTableExpected, check_dtype=False)\n", "\n", - " " + " def createDataFrame(self, columns, data):\n", + " return pd.DataFrame.from_dict(data, columns = columns, orient = 'index')\n" ] }, {