refining LinesFactoryTest
This commit is contained in:
@@ -666,9 +666,7 @@
|
||||
"source": [
|
||||
"from SymptomsCausedByVaccines.MultiLineFitting.MultiLineFitter import MultiLineFitter\n",
|
||||
"from SymptomsCausedByVaccines.MultiLineFitting.SymptomCombinationsProvider import SymptomCombinationsProvider\n",
|
||||
"import numpy as np\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from skspatial.objects import Line\n"
|
||||
"from matplotlib import pyplot as plt\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -677,8 +675,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"symptomX = 'Abdominal abscess' # HIV test' # 'Immunosuppression'\n",
|
||||
"symptomY = 'Abdominal discomfort' # 'Infection' # 'Immunoglobulin therapy'"
|
||||
"# symptomX = 'Abdominal discomfort' # HIV test' # 'Immunosuppression'\n",
|
||||
"# symptomY = 'Abdominal distension' # 'Infection' # 'Immunoglobulin therapy'"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -687,9 +685,20 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = prrByLotAndSymptom[[symptomX, symptomY]]\n",
|
||||
"df = df[(df[symptomX] != 0) & (df[symptomY] != 0)]\n",
|
||||
"df"
|
||||
"# df = prrByLotAndSymptom[[symptomX, symptomY]]\n",
|
||||
"# df = df[(df[symptomX] != 0) & (df[symptomY] != 0)]\n",
|
||||
"# df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# retain only those columns of prrByLotAndSymptom that have more than 400 PRRs != 0\n",
|
||||
"# prrByLotAndSymptom2 = prrByLotAndSymptom.loc[:, (prrByLotAndSymptom != 0).sum() >= 400]\n",
|
||||
"# prrByLotAndSymptom2"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -699,8 +708,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"symptomCombinations = SymptomCombinationsProvider.generateSymptomCombinations(\n",
|
||||
" prrByLotAndSymptom[prrByLotAndSymptom.columns[:500]],\n",
|
||||
" dataFramePredicate = lambda df: 30 <= len(df) <= 35)"
|
||||
" prrByLotAndSymptom,\n",
|
||||
" dataFramePredicate = lambda df: 40 <= len(df) <= 50)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -709,8 +718,19 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for symptomCombination in symptomCombinations:\n",
|
||||
" print(list(symptomCombination.columns))"
|
||||
"from SymptomsCausedByVaccines.MultiLineFitting.Utils import take\n",
|
||||
"\n",
|
||||
"df = take(symptomCombinations, 1)[0]\n",
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"symptomX, symptomY = df.columns"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -758,7 +778,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"clustersAscending, linesAscending = MultiLineFitter.fitPointsByAscendingLines(points, consensusThreshold = 0.001)"
|
||||
"clustersAscending, linesAscending = MultiLineFitter.fitPointsByAscendingLines(\n",
|
||||
" points,\n",
|
||||
" consensusThreshold = 0.01,\n",
|
||||
" maxNumLines = None)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -767,7 +790,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"draw(points, clustersAscending, linesAscending, symptomX, symptomY, minClusterSize = 2)"
|
||||
"draw(points, clustersAscending, linesAscending, symptomX, symptomY, minClusterSize = 5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -776,7 +799,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"clusters, lines = MultiLineFitter.fitPointsByLines(points, consensusThreshold = 0.1)"
|
||||
"clusters, lines = MultiLineFitter.fitPointsByLines(\n",
|
||||
" points,\n",
|
||||
" consensusThreshold = 0.01,\n",
|
||||
" maxNumLines = None)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user