From 72c99fae06114bd3ebb631b1bf872b977358e723 Mon Sep 17 00:00:00 2001 From: frankknoll Date: Fri, 28 Jan 2022 17:41:05 +0100 Subject: [PATCH] refactoring --- HowBadIsMyBatch.ipynb | 73 ++++++++++++++++--------------------------- 1 file changed, 27 insertions(+), 46 deletions(-) diff --git a/HowBadIsMyBatch.ipynb b/HowBadIsMyBatch.ipynb index 1d16515fe9e..966e29a72c8 100644 --- a/HowBadIsMyBatch.ipynb +++ b/HowBadIsMyBatch.ipynb @@ -17,34 +17,11 @@ { "cell_type": "code", "execution_count": null, - "id": "233bc590", + "id": "7b5d6df0", "metadata": {}, "outputs": [], "source": [ - "def createDataFrame(dataDir, manufacturer):\n", - " def read_csv(file, usecols):\n", - " return pd.read_csv(file, index_col = 'VAERS_ID', encoding = 'latin1', low_memory = False, usecols = usecols)\n", - "\n", - " def createDataFrameForYear(year):\n", - " folder = dataDir + \"/\" + year + \"VAERSData/\"\n", - " return pd.merge(\n", - " read_csv(folder + year + \"VAERSDATA.csv\", ['VAERS_ID', 'DIED', 'L_THREAT', 'DISABLE']),\n", - " read_csv(folder + year + \"VAERSVAX.csv\", ['VAERS_ID', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT']),\n", - " left_index = True,\n", - " right_index = True)\n", - "\n", - " df = pd.concat([createDataFrameForYear(\"2021\"), createDataFrameForYear(\"2022\")])\n", - " return df[(df[\"VAX_TYPE\"] == \"COVID19\") & (df[\"VAX_MANU\"] == manufacturer)]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "dea776cd", - "metadata": {}, - "outputs": [], - "source": [ - "def createDataFrame2(vaersDescrs, manufacturer):\n", + "def _createDataFrame(vaersDescrs, manufacturer):\n", " def vaersDescr2Vaers(vaersDescr):\n", " return pd.merge(vaersDescr['VAERSDATA'], vaersDescr['VAERSVAX'], left_index = True, right_index = True)\n", "\n", @@ -55,6 +32,29 @@ " return df[(df[\"VAX_TYPE\"] == \"COVID19\") & (df[\"VAX_MANU\"] == manufacturer)]" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "233bc590", + "metadata": {}, + "outputs": [], + "source": [ + "def read_csv(file, usecols):\n", + " return pd.read_csv(file, index_col = 'VAERS_ID', encoding = 'latin1', low_memory = False, usecols = usecols)\n", + "\n", + "def readVaersDescr(dataDir, year):\n", + " folder = dataDir + \"/\" + year + \"VAERSData/\"\n", + " return {\n", + " 'VAERSDATA': read_csv(folder + year + \"VAERSDATA.csv\", ['VAERS_ID', 'DIED', 'L_THREAT', 'DISABLE']),\n", + " 'VAERSVAX': read_csv(folder + year + \"VAERSVAX.csv\", ['VAERS_ID', 'VAX_TYPE', 'VAX_MANU', 'VAX_LOT'])\n", + " }\n", + "\n", + "def createDataFrame(dataDir, manufacturer):\n", + " return _createDataFrame(\n", + " [readVaersDescr(dataDir, \"2021\"), readVaersDescr(dataDir, \"2022\")],\n", + " manufacturer)" + ] + }, { "cell_type": "code", "execution_count": null, @@ -97,7 +97,6 @@ "class BatchCodeTableTest(unittest.TestCase):\n", "\n", " def test_createBatchCodeTable2(self):\n", - " # Given\n", " vaersData2021 = pd.DataFrame(columns = ['DIED', 'L_THREAT', 'DISABLE'], index = ['0916600', '0916601'])\n", " vaersData2021.loc['0916600'] = pd.Series({'DIED': 'Y', 'L_THREAT': np.NaN, 'DISABLE': np.NaN})\n", " vaersData2021.loc['0916601'] = pd.Series({'DIED': np.NaN, 'L_THREAT': np.NaN, 'DISABLE': 'Y'})\n", @@ -114,28 +113,21 @@ " vaersVax2022.loc['1996873'] = pd.Series({'VAX_TYPE': 'HPV9', 'VAX_MANU': 'MERCK & CO. INC.', 'VAX_LOT': 'R017624'})\n", " vaersVax2022.loc['1996874'] = pd.Series({'VAX_TYPE': 'COVID19', 'VAX_MANU': 'MODERNA', 'VAX_LOT': '025L20A'})\n", " \n", - " dataFrame = createDataFrame2(\n", + " dataFrame = _createDataFrame(\n", " [\n", " {'VAERSDATA': vaersData2021, 'VAERSVAX': vaersVax2021},\n", " {'VAERSDATA': vaersData2022, 'VAERSVAX': vaersVax2022}\n", " ],\n", " \"MODERNA\")\n", - " display(\"dataFrame:\", dataFrame)\n", "\n", - " # When\n", " self._test_createBatchCodeTable(dataFrame);\n", " \n", " def test_createBatchCodeTable(self):\n", - " # Given\n", - " dataFrame = createDataFrame(\"test/VAERS\", \"MODERNA\")\n", - " display(\"dataFrame:\", dataFrame)\n", - " self._test_createBatchCodeTable(dataFrame);\n", - "\n", + " self._test_createBatchCodeTable(createDataFrame(\"test/VAERS\", \"MODERNA\"));\n", "\n", " def _test_createBatchCodeTable(self, dataFrame):\n", " # When\n", " batchCodeTable = createBatchCodeTable(dataFrame)\n", - " display(\"batchCodeTable:\", batchCodeTable)\n", "\n", " # Then\n", " batchCodeTableExpected = pd.DataFrame(\n", @@ -146,7 +138,6 @@ " 'LIFE THREATENING ILLNESSES': [0, 0]\n", " },\n", " index = pd.MultiIndex.from_arrays([['025L20A', '037K20A']], names = ('VAX_LOT',)))\n", - " display(\"batchCodeTableExpected:\", batchCodeTableExpected)\n", " assert_frame_equal(batchCodeTable, batchCodeTableExpected, check_dtype = False)\n", "\n", " " @@ -186,16 +177,6 @@ "saveBatchCodeTable(\"PFIZER\\BIONTECH\", \"results/pfizer.xlsx\")\n", "saveBatchCodeTable(\"JANSSEN\", \"results/janssen.xlsx\")" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ef8f99c4", - "metadata": {}, - "outputs": [], - "source": [ - "unittest.main(argv = [''], verbosity = 2, exit = False)" - ] } ], "metadata": {