refactoring

This commit is contained in:
frankknoll
2023-03-15 18:24:44 +01:00
parent 9179069c3f
commit 388986ce6e
2 changed files with 24 additions and 22 deletions

View File

@@ -7,6 +7,7 @@ from captcha.DatasetFactory import DatasetFactory
import numpy as np
from tensorflow import keras
class CaptchaReader:
def __init__(self, modelFilepath, captchaShape):
@@ -14,19 +15,17 @@ class CaptchaReader:
self.captchaShape = captchaShape
def getTextInCaptchaImage(self, captchaImageFile):
# FK-TODO: refactor
modelDAO = ModelDAO(inColab = False)
model = modelDAO.loadModel(self.modelFilepath)
prediction_model = ModelFactory.createPredictionModel(model)
charNumConverter = CharNumConverter(CaptchaGenerator.characters)
datasetFactory = DatasetFactory(self.captchaShape,charNumConverter.char_to_num, batch_size = 64)
batchImages = self._asSingleSampleBatch(datasetFactory._encode_single_sample(captchaImageFile, 'dummy')['image'])
preds = prediction_model.predict(batchImages)
predictionsDecoder = PredictionsDecoder(CaptchaGenerator.captchaLength, charNumConverter.num_to_char)
pred_texts = predictionsDecoder.decode_batch_predictions(preds)
return pred_texts[0]
return self._getTextsInCaptchaImage(self._getCaptchaImage(captchaImageFile))[0]
def _getCaptchaImage(self, captchaImageFile):
return self._asSingleSampleBatch(DatasetFactory.encodeImage(captchaImageFile, self.captchaShape))
def _asSingleSampleBatch(self, img):
array = keras.utils.img_to_array(img)
array = np.expand_dims(array, axis=0)
return array
return np.expand_dims(keras.utils.img_to_array(img), axis=0)
def _getTextsInCaptchaImage(self, captchaImage):
preds = self._createPredictionModel().predict(captchaImage)
return PredictionsDecoder(CaptchaGenerator.captchaLength, CharNumConverter(CaptchaGenerator.characters).num_to_char).decode_batch_predictions(preds)
def _createPredictionModel(self):
return ModelFactory.createPredictionModel(ModelDAO(inColab=False).loadModel(self.modelFilepath))

View File

@@ -10,15 +10,18 @@ class DatasetFactory:
def createDataset(self, x, y):
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.map(self._encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.map(self._encodeImageAndLabel, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.batch(self.batch_size).prefetch(buffer_size=tf.data.AUTOTUNE)
return dataset
def _encode_single_sample(self, img_path, label):
img = tf.io.read_file(img_path)
def _encodeImageAndLabel(self, imageFilename, label):
return {
"image": DatasetFactory.encodeImage(imageFilename, self.captchaShape),
"label": self.char_to_num(tf.strings.unicode_split(label, input_encoding="UTF-8"))}
@staticmethod
def encodeImage(imageFilename, captchaShape):
img = tf.io.read_file(imageFilename)
img = tf.io.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [self.captchaShape.height, self.captchaShape.width])
# Map the characters in label to numbers
label = self.char_to_num(tf.strings.unicode_split(label, input_encoding="UTF-8"))
# Return a dict as our model is expecting two inputs
return {"image": img, "label": label}
img = tf.image.resize(img, [captchaShape.height, captchaShape.width])
return img