From bc0a66d576eb7bc734aaa1aa9dd6962d8971275e Mon Sep 17 00:00:00 2001 From: frankknoll Date: Sat, 18 Jun 2022 17:14:01 +0200 Subject: [PATCH] simplifying kears code --- src/HowBadIsMyBatch.ipynb | 23 ++++------------------- 1 file changed, 4 insertions(+), 19 deletions(-) diff --git a/src/HowBadIsMyBatch.ipynb b/src/HowBadIsMyBatch.ipynb index 41d99144fc2..ecff57b475b 100644 --- a/src/HowBadIsMyBatch.ipynb +++ b/src/HowBadIsMyBatch.ipynb @@ -238,8 +238,6 @@ "# copied from value of characters variable in captcha_ocr.ipynb or captcha_ocr_trainAndSaveModel.ipynb\n", "characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'a', 'b', 'c', 'd', 'e', 'f']\n", "\n", - "batch_size = 1\n", - "\n", "img_width = 241\n", "img_height = 62\n", "\n", @@ -270,7 +268,9 @@ " # dimension to correspond to the width of the image.\n", " img = tf.transpose(img, perm=[1, 0, 2])\n", " # 7. Return a dict as our model is expecting two inputs\n", - " return img\n", + " array = keras.utils.img_to_array(img)\n", + " array = np.expand_dims(array, axis=0)\n", + " return array\n", "\n", "\n", "def decode_batch_predictions(pred):\n", @@ -294,26 +294,11 @@ "\n", "\n", "def getTextInCaptchaImage(captchaImageFile):\n", - " batchImages = getBatchImagesFromFile(captchaImageFile)\n", + " batchImages = encode_single_sample(captchaImageFile)\n", " preds = model.predict(batchImages)\n", " return decode_batch_predictions(preds)[0]\n", "\n", "\n", - "def getBatchImagesFromFile(imageFile):\n", - " return list(asDataset(imageFile).as_numpy_iterator())[0]\n", - "\n", - "\n", - "def asDataset(imageFile):\n", - " dataset = tf.data.Dataset.from_tensor_slices([imageFile])\n", - " dataset = (\n", - " dataset\n", - " .map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)\n", - " .batch(batch_size)\n", - " .prefetch(buffer_size=tf.data.AUTOTUNE)\n", - " )\n", - " return dataset\n", - "\n", - "\n", "print(\"loading model...\")\n", "model = load_model()\n", "model.summary()"