tools v2.0

Most tools now have plugins
This commit is contained in:
Apprentice Alf
2010-10-18 21:06:58 +01:00
parent d427f758f6
commit bf03edd18c
96 changed files with 7081 additions and 82 deletions

View File

@@ -0,0 +1,184 @@
# -*- coding: utf-8 -*-
#
# PublicKey/RSA.py : RSA public key primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""RSA public-key cryptography algorithm."""
__revision__ = "$Id$"
__all__ = ['generate', 'construct', 'error']
from Crypto.Util.python_compat import *
from Crypto.PublicKey import _RSA, _slowmath, pubkey
from Crypto import Random
try:
from Crypto.PublicKey import _fastmath
except ImportError:
_fastmath = None
class _RSAobj(pubkey.pubkey):
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
def __init__(self, implementation, key):
self.implementation = implementation
self.key = key
def __getattr__(self, attrname):
if attrname in self.keydata:
# For backward compatibility, allow the user to get (not set) the
# RSA key parameters directly from this object.
return getattr(self.key, attrname)
else:
raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
def _encrypt(self, c, K):
return (self.key._encrypt(c),)
def _decrypt(self, c):
#(ciphertext,) = c
(ciphertext,) = c[:1] # HACK - We should use the previous line
# instead, but this is more compatible and we're
# going to replace the Crypto.PublicKey API soon
# anyway.
return self.key._decrypt(ciphertext)
def _blind(self, m, r):
return self.key._blind(m, r)
def _unblind(self, m, r):
return self.key._unblind(m, r)
def _sign(self, m, K=None):
return (self.key._sign(m),)
def _verify(self, m, sig):
#(s,) = sig
(s,) = sig[:1] # HACK - We should use the previous line instead, but
# this is more compatible and we're going to replace
# the Crypto.PublicKey API soon anyway.
return self.key._verify(m, s)
def has_private(self):
return self.key.has_private()
def size(self):
return self.key.size()
def can_blind(self):
return True
def can_encrypt(self):
return True
def can_sign(self):
return True
def publickey(self):
return self.implementation.construct((self.key.n, self.key.e))
def __getstate__(self):
d = {}
for k in self.keydata:
try:
d[k] = getattr(self.key, k)
except AttributeError:
pass
return d
def __setstate__(self, d):
if not hasattr(self, 'implementation'):
self.implementation = RSAImplementation()
t = []
for k in self.keydata:
if not d.has_key(k):
break
t.append(d[k])
self.key = self.implementation._math.rsa_construct(*tuple(t))
def __repr__(self):
attrs = []
for k in self.keydata:
if k == 'n':
attrs.append("n(%d)" % (self.size()+1,))
elif hasattr(self.key, k):
attrs.append(k)
if self.has_private():
attrs.append("private")
return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
class RSAImplementation(object):
def __init__(self, **kwargs):
# 'use_fast_math' parameter:
# None (default) - Use fast math if available; Use slow math if not.
# True - Use fast math, and raise RuntimeError if it's not available.
# False - Use slow math.
use_fast_math = kwargs.get('use_fast_math', None)
if use_fast_math is None: # Automatic
if _fastmath is not None:
self._math = _fastmath
else:
self._math = _slowmath
elif use_fast_math: # Explicitly select fast math
if _fastmath is not None:
self._math = _fastmath
else:
raise RuntimeError("fast math module not available")
else: # Explicitly select slow math
self._math = _slowmath
self.error = self._math.error
# 'default_randfunc' parameter:
# None (default) - use Random.new().read
# not None - use the specified function
self._default_randfunc = kwargs.get('default_randfunc', None)
self._current_randfunc = None
def _get_randfunc(self, randfunc):
if randfunc is not None:
return randfunc
elif self._current_randfunc is None:
self._current_randfunc = Random.new().read
return self._current_randfunc
def generate(self, bits, randfunc=None, progress_func=None):
rf = self._get_randfunc(randfunc)
obj = _RSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _RSA module
key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
return _RSAobj(self, key)
def construct(self, tup):
key = self._math.rsa_construct(*tup)
return _RSAobj(self, key)
_impl = RSAImplementation()
generate = _impl.generate
construct = _impl.construct
error = _impl.error
# vim:set ts=4 sw=4 sts=4 expandtab:

View File

@@ -0,0 +1,95 @@
#
# RSA.py : RSA encryption/decryption
#
# Part of the Python Cryptography Toolkit
#
# Written by Andrew Kuchling, Paul Swartz, and others
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
#
__revision__ = "$Id$"
from Crypto.PublicKey import pubkey
from Crypto.Util import number
def generate_py(bits, randfunc, progress_func=None):
"""generate(bits:int, randfunc:callable, progress_func:callable)
Generate an RSA key of length 'bits', using 'randfunc' to get
random data and 'progress_func', if present, to display
the progress of the key generation.
"""
obj=RSAobj()
obj.e = 65537L
# Generate the prime factors of n
if progress_func:
progress_func('p,q\n')
p = q = 1L
while number.size(p*q) < bits:
# Note that q might be one bit longer than p if somebody specifies an odd
# number of bits for the key. (Why would anyone do that? You don't get
# more security.)
#
# Note also that we ensure that e is coprime to (p-1) and (q-1).
# This is needed for encryption to work properly, according to the 1997
# paper by Robert D. Silverman of RSA Labs, "Fast generation of random,
# strong RSA primes", available at
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.2713&rep=rep1&type=pdf
# Since e=65537 is prime, it is sufficient to check that e divides
# neither (p-1) nor (q-1).
p = 1L
while (p - 1) % obj.e == 0:
if progress_func:
progress_func('p\n')
p = pubkey.getPrime(bits/2, randfunc)
q = 1L
while (q - 1) % obj.e == 0:
if progress_func:
progress_func('q\n')
q = pubkey.getPrime(bits - (bits/2), randfunc)
# p shall be smaller than q (for calc of u)
if p > q:
(p, q)=(q, p)
obj.p = p
obj.q = q
if progress_func:
progress_func('u\n')
obj.u = pubkey.inverse(obj.p, obj.q)
obj.n = obj.p*obj.q
if progress_func:
progress_func('d\n')
obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1))
assert bits <= 1+obj.size(), "Generated key is too small"
return obj
class RSAobj(pubkey.pubkey):
def size(self):
"""size() : int
Return the maximum number of bits that can be handled by this key.
"""
return number.size(self.n) - 1

View File

@@ -0,0 +1,37 @@
# -*- coding: utf-8 -*-
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""Public-key encryption and signature algorithms.
Public-key encryption uses two different keys, one for encryption and
one for decryption. The encryption key can be made public, and the
decryption key is kept private. Many public-key algorithms can also
be used to sign messages, and some can *only* be used for signatures.
Crypto.PublicKey.DSA Digital Signature Algorithm. (Signature only)
Crypto.PublicKey.ElGamal (Signing and encryption)
Crypto.PublicKey.RSA (Signing, encryption, and blinding)
Crypto.PublicKey.qNEW (Signature only)
"""
__all__ = ['RSA', 'DSA', 'ElGamal', 'qNEW']
__revision__ = "$Id$"

View File

@@ -0,0 +1,134 @@
# -*- coding: utf-8 -*-
#
# PubKey/RSA/_slowmath.py : Pure Python implementation of the RSA portions of _fastmath
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""Pure Python implementation of the RSA-related portions of Crypto.PublicKey._fastmath."""
__revision__ = "$Id$"
__all__ = ['rsa_construct']
from Crypto.Util.python_compat import *
from Crypto.Util.number import size, inverse
class error(Exception):
pass
class _RSAKey(object):
def _blind(self, m, r):
# compute r**e * m (mod n)
return m * pow(r, self.e, self.n)
def _unblind(self, m, r):
# compute m / r (mod n)
return inverse(r, self.n) * m % self.n
def _decrypt(self, c):
# compute c**d (mod n)
if not self.has_private():
raise TypeError("No private key")
return pow(c, self.d, self.n) # TODO: CRT exponentiation
def _encrypt(self, m):
# compute m**d (mod n)
return pow(m, self.e, self.n)
def _sign(self, m): # alias for _decrypt
if not self.has_private():
raise TypeError("No private key")
return self._decrypt(m)
def _verify(self, m, sig):
return self._encrypt(sig) == m
def has_private(self):
return hasattr(self, 'd')
def size(self):
"""Return the maximum number of bits that can be encrypted"""
return size(self.n) - 1
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
"""Construct an RSAKey object"""
assert isinstance(n, long)
assert isinstance(e, long)
assert isinstance(d, (long, type(None)))
assert isinstance(p, (long, type(None)))
assert isinstance(q, (long, type(None)))
assert isinstance(u, (long, type(None)))
obj = _RSAKey()
obj.n = n
obj.e = e
if d is not None: obj.d = d
if p is not None: obj.p = p
if q is not None: obj.q = q
if u is not None: obj.u = u
return obj
class _DSAKey(object):
def size(self):
"""Return the maximum number of bits that can be encrypted"""
return size(self.p) - 1
def has_private(self):
return hasattr(self, 'x')
def _sign(self, m, k): # alias for _decrypt
# SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
if not self.has_private():
raise TypeError("No private key")
if not (1L < k < self.q):
raise ValueError("k is not between 2 and q-1")
inv_k = inverse(k, self.q) # Compute k**-1 mod q
r = pow(self.g, k, self.p) % self.q # r = (g**k mod p) mod q
s = (inv_k * (m + self.x * r)) % self.q
return (r, s)
def _verify(self, m, r, s):
# SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
if not (0 < r < self.q) or not (0 < s < self.q):
return False
w = inverse(s, self.q)
u1 = (m*w) % self.q
u2 = (r*w) % self.q
v = (pow(self.g, u1, self.p) * pow(self.y, u2, self.p) % self.p) % self.q
return v == r
def dsa_construct(y, g, p, q, x=None):
assert isinstance(y, long)
assert isinstance(g, long)
assert isinstance(p, long)
assert isinstance(q, long)
assert isinstance(x, (long, type(None)))
obj = _DSAKey()
obj.y = y
obj.g = g
obj.p = p
obj.q = q
if x is not None: obj.x = x
return obj
# vim:set ts=4 sw=4 sts=4 expandtab:

View File

@@ -0,0 +1,192 @@
#
# pubkey.py : Internal functions for public key operations
#
# Part of the Python Cryptography Toolkit
#
# Written by Andrew Kuchling, Paul Swartz, and others
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
#
__revision__ = "$Id$"
import types, warnings
from Crypto.Util.number import *
# Basic public key class
class pubkey:
def __init__(self):
pass
def __getstate__(self):
"""To keep key objects platform-independent, the key data is
converted to standard Python long integers before being
written out. It will then be reconverted as necessary on
restoration."""
d=self.__dict__
for key in self.keydata:
if d.has_key(key): d[key]=long(d[key])
return d
def __setstate__(self, d):
"""On unpickling a key object, the key data is converted to the big
number representation being used, whether that is Python long
integers, MPZ objects, or whatever."""
for key in self.keydata:
if d.has_key(key): self.__dict__[key]=bignum(d[key])
def encrypt(self, plaintext, K):
"""encrypt(plaintext:string|long, K:string|long) : tuple
Encrypt the string or integer plaintext. K is a random
parameter required by some algorithms.
"""
wasString=0
if isinstance(plaintext, types.StringType):
plaintext=bytes_to_long(plaintext) ; wasString=1
if isinstance(K, types.StringType):
K=bytes_to_long(K)
ciphertext=self._encrypt(plaintext, K)
if wasString: return tuple(map(long_to_bytes, ciphertext))
else: return ciphertext
def decrypt(self, ciphertext):
"""decrypt(ciphertext:tuple|string|long): string
Decrypt 'ciphertext' using this key.
"""
wasString=0
if not isinstance(ciphertext, types.TupleType):
ciphertext=(ciphertext,)
if isinstance(ciphertext[0], types.StringType):
ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1
plaintext=self._decrypt(ciphertext)
if wasString: return long_to_bytes(plaintext)
else: return plaintext
def sign(self, M, K):
"""sign(M : string|long, K:string|long) : tuple
Return a tuple containing the signature for the message M.
K is a random parameter required by some algorithms.
"""
if (not self.has_private()):
raise TypeError('Private key not available in this object')
if isinstance(M, types.StringType): M=bytes_to_long(M)
if isinstance(K, types.StringType): K=bytes_to_long(K)
return self._sign(M, K)
def verify (self, M, signature):
"""verify(M:string|long, signature:tuple) : bool
Verify that the signature is valid for the message M;
returns true if the signature checks out.
"""
if isinstance(M, types.StringType): M=bytes_to_long(M)
return self._verify(M, signature)
# alias to compensate for the old validate() name
def validate (self, M, signature):
warnings.warn("validate() method name is obsolete; use verify()",
DeprecationWarning)
def blind(self, M, B):
"""blind(M : string|long, B : string|long) : string|long
Blind message M using blinding factor B.
"""
wasString=0
if isinstance(M, types.StringType):
M=bytes_to_long(M) ; wasString=1
if isinstance(B, types.StringType): B=bytes_to_long(B)
blindedmessage=self._blind(M, B)
if wasString: return long_to_bytes(blindedmessage)
else: return blindedmessage
def unblind(self, M, B):
"""unblind(M : string|long, B : string|long) : string|long
Unblind message M using blinding factor B.
"""
wasString=0
if isinstance(M, types.StringType):
M=bytes_to_long(M) ; wasString=1
if isinstance(B, types.StringType): B=bytes_to_long(B)
unblindedmessage=self._unblind(M, B)
if wasString: return long_to_bytes(unblindedmessage)
else: return unblindedmessage
# The following methods will usually be left alone, except for
# signature-only algorithms. They both return Boolean values
# recording whether this key's algorithm can sign and encrypt.
def can_sign (self):
"""can_sign() : bool
Return a Boolean value recording whether this algorithm can
generate signatures. (This does not imply that this
particular key object has the private information required to
to generate a signature.)
"""
return 1
def can_encrypt (self):
"""can_encrypt() : bool
Return a Boolean value recording whether this algorithm can
encrypt data. (This does not imply that this
particular key object has the private information required to
to decrypt a message.)
"""
return 1
def can_blind (self):
"""can_blind() : bool
Return a Boolean value recording whether this algorithm can
blind data. (This does not imply that this
particular key object has the private information required to
to blind a message.)
"""
return 0
# The following methods will certainly be overridden by
# subclasses.
def size (self):
"""size() : int
Return the maximum number of bits that can be handled by this key.
"""
return 0
def has_private (self):
"""has_private() : bool
Return a Boolean denoting whether the object contains
private components.
"""
return 0
def publickey (self):
"""publickey(): object
Return a new key object containing only the public information.
"""
return self
def __eq__ (self, other):
"""__eq__(other): 0, 1
Compare us to other for equality.
"""
return self.__getstate__() == other.__getstate__()
def __ne__ (self, other):
"""__ne__(other): 0, 1
Compare us to other for inequality.
"""
return not self.__eq__(other)